當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.update_add方法代碼示例

本文整理匯總了Python中keras.backend.update_add方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.update_add方法的具體用法?Python backend.update_add怎麽用?Python backend.update_add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.update_add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = self.learning_rate * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            p_t = lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            self.updates.append(K.update_sub(p, p_t))
        return self.updates 
開發者ID:CyberZHG,項目名稱:keras-lookahead,代碼行數:21,代碼來源:optimizers.py

示例2: __call__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def __call__(self, y_true, y_pred):
        y_true = K.cast(K.round(y_true), "int32")
        y_pred = K.cast(K.round(y_pred), "int32")
        neg_y_pred = 1 - y_pred

        tp = K.sum(K.transpose(y_true * y_pred), axis=-1)
        fn = K.sum(K.transpose(y_true * neg_y_pred), axis=-1)

        current_tp = K.cast(self.tp + tp, self.epsilon.dtype)
        current_fn = K.cast(self.fn + fn, self.epsilon.dtype)

        tp_update = K.update_add(self.tp, tp)
        fn_update = K.update_add(self.fn, fn)

        self.add_update(tp_update, inputs=[y_true, y_pred])
        self.add_update(fn_update, inputs=[y_true, y_pred])

        return K.mean(truediv(current_tp, current_tp + current_fn + self.epsilon)) 
開發者ID:netrack,項目名稱:keras-metrics,代碼行數:20,代碼來源:metrics.py

示例3: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
    grads = self.get_gradients(loss, params)
    self.updates = [K.update_add(self.iterations, 1)]

    lr = self.lr
    if self.initial_decay > 0:
      lr *= (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay))))

    t = K.cast(self.iterations, K.floatx()) + 1
    lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /(1. - K.pow(self.beta_1, t)))

    ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
    vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
    vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 
    self.weights = [self.iterations] + ms + vs + vhats

    for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
      m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
      v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
      vhat_t = K.maximum(vhat, v_t)
      p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)

      self.updates.append(K.update(m, m_t))
      self.updates.append(K.update(v, v_t))
      self.updates.append(K.update(vhat, vhat_t))
      new_p = p_t

      # Apply constraints.
      if getattr(p, 'constraint', None) is not None:
        new_p = p.constraint(new_p)

      self.updates.append(K.update(p, new_p))
    return self.updates 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:35,代碼來源:models.py

示例4: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
                                                      K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        beta_1_t = K.pow(self.beta_1, t)
        beta_2_t = K.pow(self.beta_2, t)
        rho = 2 / (1 - self.beta_2) - 1
        rho_t = rho - 2 * t * beta_2_t / (1 - beta_2_t)
        r_t = K.sqrt(
            K.relu(rho_t - 4) * K.relu(rho_t - 2) * rho / ((rho - 4) * (rho - 2) * rho_t)
        )
        flag = K.cast(rho_t > 4, K.floatx())

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            mhat_t = m_t / (1 - beta_1_t)
            vhat_t = K.sqrt(v_t / (1 - beta_2_t))
            p_t = p - lr * mhat_t * (flag * r_t / (vhat_t + self.epsilon) + (1 - flag))

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:42,代碼來源:keras_radam.py

示例5: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        weights = self.get_weights()
        self.updates = [K.update_add(self.iterations, 1)]
        scaled_lr = self.lr
        w_norm = K.sqrt(K.sum([K.sum(K.square(weight))
                               for weight in weights]))
        g_norm = K.sqrt(K.sum([K.sum(K.square(grad))
                               for grad in grads]))
        scaled_lr = K.switch(K.greater(w_norm * g_norm, K.zeros([1])),
                             K.expand_dims((self.eeta * w_norm /
                                            (g_norm + self.weight_decay * w_norm +
                                             self.epsilon)) * self.lr),
                             K.ones([1]) * self.lr)
        if K.backend() == 'theano':
            scaled_lr = scaled_lr[0]  # otherwise theano raise broadcasting error
        # momentum
        moments = [K.zeros(K.int_shape(param), dtype=K.dtype(param))
                   for param in params]
        self.weights = [self.iterations] + moments
        for param, grad, moment in zip(params, grads, moments):
            v0 = (moment * self.momentum)
            v1 = scaled_lr * grad  # velocity
            veloc = v0 - v1
            self.updates.append(K.update(moment, veloc))

            if self.nesterov:
                new_param = param + (veloc * self.momentum) - v1
            else:
                new_param = param + veloc

            # Apply constraints.
            if getattr(param, 'constraint', None) is not None:
                new_param = param.constraint(new_param)

            self.updates.append(K.update(param, new_param))
        return self.updates 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:39,代碼來源:lars.py

示例6: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
                                                      K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vhats = [K.zeros(1) for _ in params]
        self.weights = [self.iterations] + ms + vs + vhats

        for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
            g2 = K.square(g)
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = v - (1. - self.beta_2) * K.sign(v - g2) * g2
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:36,代碼來源:yogi.py

示例7: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.inital_decay > 0:
            lr *= (1. / (1. + self.decay * self.iterations))

        t = self.iterations + 1

        lr_t = lr / (1. - K.pow(self.beta_1, t))

        shapes = [K.int_shape(p) for p in params]
        zs = [K.zeros(shape) for shape in shapes]
        vs = [K.zeros(shape) for shape in shapes]
        ds = [K.zeros(shape) for shape in shapes]
        self.weights = [self.iterations] + zs + vs + ds

        for p, g, z, v, d in zip(params, grads, zs, vs, ds):
            v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g)
            d_t = (K.sqrt(v_t / (1. - K.pow(self.beta_2, t)))
                   + self.epsilon) / lr_t
            sigma_t = d_t - self.beta_1 * d
            z_t = self.beta_1 * z + (1. - self.beta_1) * g - sigma_t * p

            p_t = - z_t / d_t

            self.updates.append(K.update(z, z_t))
            self.updates.append(K.update(v, v_t))
            self.updates.append(K.update(d, d_t))

            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:41,代碼來源:ftml.py

示例8: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = []
        self.updates.append(K.update_add(self.iterations, 1))
        for p, g in zip(params, grads):
            self.updates.append((p, p - self.lr * g))
        return self.updates 
開發者ID:icoxfog417,項目名稱:tying-wv-and-wc,代碼行數:9,代碼來源:lang_model_sgd.py

示例9: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        tower_gradvars = []
        gdev_list = self._gdev_list

        global_scope = tf.get_variable_scope()
        for idev, device in enumerate(gdev_list):
            with tf.device(device), \
                    tf.variable_scope(global_scope, reuse=idev > 0), \
                    tf.name_scope('tower_%i' % idev):
                grads = self.optimizer.compute_gradients(loss, params)

            gradvars = zip(grads, params)
            tower_gradvars.append(gradvars)

        tower_gradvars = all_avg_gradients(tower_gradvars,
                                           gdev_list,
                                           usenccl=False)

        self.updates = [K.update_add(self.iterations, 1)]

        for device_num, device in enumerate(gdev_list):
            with tf.device(device):
                gradvars = tower_gradvars[device_num]
                opt_update = self.optimizer.apply_gradients(
                    grads, global_step=self.iterations)
            self.updates.append(opt_update)

        return self.updates 
開發者ID:avolkov1,項目名稱:keras_experiments,代碼行數:30,代碼來源:optimizers.py

示例10: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]
        wd = self.wd # decoupled weight decay (3/4)

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) - lr * wd * p # decoupled weight decay (4/4)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:kurapan,項目名稱:EAST,代碼行數:35,代碼來源:adamw.py

示例11: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))
        # momentum
        shapes = [K.int_shape(p) for p in params]
        moments = [K.zeros(shape) for shape in shapes]
        self.weights = [self.iterations] + moments
        for p, g, m in zip(params, grads, moments):
            v = self.momentum * m + g  # velocity
            self.updates.append(K.update(m, v))

            if self.nesterov:
                new_p = p - lr * (self.momentum * v + g)
            else:
                new_p = p - lr * v

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:izikgo,項目名稱:AnomalyDetectionTransformations,代碼行數:29,代碼來源:wide_residual_network.py

示例12: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def call(self, inputs, training=None):
        noise_shape = self._get_noise_shape(inputs)
        t = K.cast(self.iterations, K.floatx()) + 1
        p = t / float(self.decay_interval)

        keep_rate = self.initial_keep_rate * K.pow(self.decay_rate, p)

        def dropped_inputs():
            self.add_update([K.update_add(self.iterations, [1])], inputs)
            return K.dropout(inputs, 1 - keep_rate[0], noise_shape, seed=self.seed)
        return K.in_train_phase(dropped_inputs, inputs, training=training) 
開發者ID:YerevaNN,項目名稱:DIIN-in-Keras,代碼行數:13,代碼來源:decaying_dropout.py

示例13: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))
        
        accum_switch = K.equal(self.iterations % self.accum_iters, 0)
        print(accum_switch)
        accum_switch = K.cast(accum_switch, dtype='float32')

        # momentum
        shapes = [K.int_shape(p) for p in params]
        moments = [K.zeros(shape) for shape in shapes]
        temp_grads = [K.zeros(shape) for shape in shapes]
        self.weights = [self.iterations] + moments
        for p, cg, m, tg in zip(params, grads, moments, temp_grads):
            g = cg + tg
            v = self.momentum * m - (lr * g / self.accum_iters)  # velocity
            self.updates.append(K.update(m, (1 - accum_switch) * m + accum_switch * v))
            self.updates.append(K.update(tg, (1 - accum_switch) * g))

            if self.nesterov:
                new_p = p + self.momentum * v - (lr * g / self.accum_iters)
            else:
                new_p = p + v

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, (1 - accum_switch) * p + accum_switch * new_p))
        return self.updates 
開發者ID:wwoody827,項目名稱:cvpr-2018-autonomous-driving-autopilot-solution,代碼行數:37,代碼來源:model_inceptionresnet.py

示例14: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))
        # momentum
        shapes = [K.int_shape(p) for p in params]
        moments = [K.zeros(shape) for shape in shapes]
        self.weights = [self.iterations] + moments
        for p, g, m in zip(params, grads, moments):
            
            matched_layer = [x for x in self.lr_multipliers.keys() if x in p.name]
            if matched_layer:
                new_lr = lr * self.lr_multipliers[matched_layer[0]]
            else:
                new_lr = lr

            v = self.momentum * m - new_lr * g  # velocity
            self.updates.append(K.update(m, v))

            if self.nesterov:
                new_p = p + self.momentum * v - new_lr * g
            else:
                new_p = p + v

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:noelcodella,項目名稱:tripletloss-keras-tensorflow,代碼行數:36,代碼來源:LR_SGD.py

示例15: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update_add [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = K.cast(self.iterations, K.floatx()) + 1

        # Due to the recommendations in [2], i.e. warming momentum schedule
        momentum_cache_t = self.beta_1 * (1. - 0.5 * (
            K.pow(K.cast_to_floatx(0.96), t * self.schedule_decay)))
        momentum_cache_t_1 = self.beta_1 * (1. - 0.5 * (
            K.pow(K.cast_to_floatx(0.96), (t + 1) * self.schedule_decay)))
        m_schedule_new = self.m_schedule * momentum_cache_t
        m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1
        self.updates.append((self.m_schedule, m_schedule_new))

        shapes = [K.int_shape(p) for p in params]
        ms = [K.zeros(shape, name='m_' + str(i))
              for (i, shape) in enumerate(shapes)]
        vs = [K.zeros(shape, name='v_' + str(i))
              for (i, shape) in enumerate(shapes)]

        self.weights = [self.iterations, self.m_schedule] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            # Learning rate multipliers
            lr_t = self.learning_rate
            if self.lr_multipliers is not None:
                lr_t = _apply_lr_multiplier(self, lr_t, p)

            # the following equations given in [1]
            g_prime = g / (1. - m_schedule_new)
            m_t = self.beta_1 * m + (1. - self.beta_1) * g
            m_t_prime = m_t / (1. - m_schedule_next)
            v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g)
            v_t_prime = v_t / (1. - K.pow(self.beta_2, t))
            m_t_bar = (1. - momentum_cache_t) * g_prime + (
                momentum_cache_t_1 * m_t_prime)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            p_t = p - self.eta_t * lr_t * m_t_bar / (
                    K.sqrt(v_t_prime) + self.epsilon)

            # Weight decays
            if p.name in self.weight_decays.keys():
                p_t = _apply_weight_decays(self, p, p_t)
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)
            self.updates.append(K.update(p, new_p))

        # Cosine annealing
        _update_t_cur_eta_t(self)
        self.lr_t = lr_t * self.eta_t  # for external tracking

        self._init_notified = True
        return self.updates 
開發者ID:OverLordGoldDragon,項目名稱:keras-adamw,代碼行數:61,代碼來源:optimizers.py


注:本文中的keras.backend.update_add方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。