當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.update方法代碼示例

本文整理匯總了Python中keras.backend.update方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.update方法的具體用法?Python backend.update怎麽用?Python backend.update使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.update方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = self.learning_rate * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            p_t = lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            self.updates.append(K.update_sub(p, p_t))
        return self.updates 
開發者ID:CyberZHG,項目名稱:keras-lookahead,代碼行數:21,代碼來源:optimizers.py

示例2: merge_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def merge_updates(updates):
    """Average repeated updates of the same variable"""
    merged_updates = {}
    for update in updates:
        variable, value = unpack_assignment(update)
        key = variable_key(variable)
        if key not in merged_updates:
            merged_updates[key] = [variable, []]
        merged_updates[key][1].append(value)
    ret = []
    for k, v in iteritems(merged_updates):
        variable = v[0]
        values = v[1]
        n = len(values)
        if n == 1:
            ret.append(K.update(variable, value[0]))
        else:
            ret.append(K.update(variable, sum(values) / n))
    return ret 
開發者ID:bstriner,項目名稱:keras-adversarial,代碼行數:21,代碼來源:adversarial_utils.py

示例3: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def call(self, inputs, training=None):
        z, gamma_k = inputs

        gamma_k_sum = K.sum(gamma_k)
        est_phi = K.mean(gamma_k, axis=0)
        est_mu = K.dot(K.transpose(gamma_k), z) / gamma_k_sum
        est_sigma = K.dot(K.transpose(z - est_mu),
                          gamma_k * (z - est_mu)) / gamma_k_sum

        est_sigma = est_sigma + (K.random_normal(shape=(K.int_shape(z)[1], 1), mean=1e-3, stddev=1e-4) * K.eye(K.int_shape(z)[1]))

        self.add_update(K.update(self.phi, est_phi), inputs)
        self.add_update(K.update(self.mu, est_mu), inputs)
        self.add_update(K.update(self.sigma, est_sigma), inputs)

        est_sigma_diag_inv = K.eye(K.int_shape(self.sigma)[0]) / est_sigma
        self.add_loss(self.lambd_diag * K.sum(est_sigma_diag_inv), inputs)

        phi = K.in_train_phase(est_phi, self.phi, training)
        mu = K.in_train_phase(est_mu, self.mu, training)
        sigma = K.in_train_phase(est_sigma, self.sigma, training)
        return GaussianMixtureComponent._calc_component_density(z, phi, mu, sigma) 
開發者ID:izikgo,項目名稱:AnomalyDetectionTransformations,代碼行數:24,代碼來源:dagmm.py

示例4: apply_box_deltas_graph

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def apply_box_deltas_graph(boxes, deltas):
    """Applies the given deltas to the given boxes.
    boxes: [N, (y1, x1, y2, x2)] boxes to update
    deltas: [N, (dy, dx, log(dh), log(dw))] refinements to apply
    """
    # Convert to y, x, h, w
    height = boxes[:, 2] - boxes[:, 0]
    width = boxes[:, 3] - boxes[:, 1]
    center_y = boxes[:, 0] + 0.5 * height
    center_x = boxes[:, 1] + 0.5 * width
    # Apply deltas
    center_y += deltas[:, 0] * height
    center_x += deltas[:, 1] * width
    height *= tf.exp(deltas[:, 2])
    width *= tf.exp(deltas[:, 3])
    # Convert back to y1, x1, y2, x2
    y1 = center_y - 0.5 * height
    x1 = center_x - 0.5 * width
    y2 = y1 + height
    x2 = x1 + width
    result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out")
    return result 
開發者ID:wwoody827,項目名稱:cvpr-2018-autonomous-driving-autopilot-solution,代碼行數:24,代碼來源:model_inceptionresnet.py

示例5: add_weightnorm_param_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def add_weightnorm_param_updates(updates, new_V_param, new_g_param, W, V_scaler):
    ps = K.get_variable_shape(new_V_param)
    norm_axes = [i for i in range(len(ps) - 1)]

    # update W and V_scaler
    new_V_norm = tf.sqrt(tf.reduce_sum(tf.square(new_V_param), norm_axes))
    new_V_scaler = new_g_param / new_V_norm
    new_W = tf.reshape(new_V_scaler, [1] * len(norm_axes) + [-1]) * new_V_param
    updates.append(K.update(W, new_W))
    updates.append(K.update(V_scaler, new_V_scaler))


# data based initialization for a given Keras model 
開發者ID:openai,項目名稱:weightnorm,代碼行數:15,代碼來源:weightnorm.py

示例6: data_based_init

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def data_based_init(model, input):

    # input can be dict, numpy array, or list of numpy arrays
    if type(input) is dict:
        feed_dict = input
    elif type(input) is list:
        feed_dict = {tf_inp: np_inp for tf_inp,np_inp in zip(model.inputs,input)}
    else:
        feed_dict = {model.inputs[0]: input}

    # add learning phase if required
    if model.uses_learning_phase and K.learning_phase() not in feed_dict:
        feed_dict.update({K.learning_phase(): 1})

    # get all layer name, output, weight, bias tuples
    layer_output_weight_bias = []
    for l in model.layers:
        if hasattr(l, 'W') and hasattr(l, 'b'):
            assert(l.built)
            layer_output_weight_bias.append( (l.name,l.get_output_at(0),l.W,l.b) ) # if more than one node, only use the first

    # iterate over our list and do data dependent init
    sess = K.get_session()
    for l,o,W,b in layer_output_weight_bias:
        print('Performing data dependent initialization for layer ' + l)
        m,v = tf.nn.moments(o, [i for i in range(len(o.get_shape())-1)])
        s = tf.sqrt(v + 1e-10)
        updates = tf.group(W.assign(W/tf.reshape(s,[1]*(len(W.get_shape())-1)+[-1])), b.assign((b-m)/s))
        sess.run(updates, feed_dict) 
開發者ID:openai,項目名稱:weightnorm,代碼行數:31,代碼來源:weightnorm.py

示例7: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def get_updates(self, loss, params):
    grads = self.get_gradients(loss, params)
    self.updates = [K.update_add(self.iterations, 1)]

    lr = self.lr
    if self.initial_decay > 0:
      lr *= (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay))))

    t = K.cast(self.iterations, K.floatx()) + 1
    lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /(1. - K.pow(self.beta_1, t)))

    ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
    vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
    vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 
    self.weights = [self.iterations] + ms + vs + vhats

    for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
      m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
      v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
      vhat_t = K.maximum(vhat, v_t)
      p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)

      self.updates.append(K.update(m, m_t))
      self.updates.append(K.update(v, v_t))
      self.updates.append(K.update(vhat, vhat_t))
      new_p = p_t

      # Apply constraints.
      if getattr(p, 'constraint', None) is not None:
        new_p = p.constraint(new_p)

      self.updates.append(K.update(p, new_p))
    return self.updates 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:35,代碼來源:models.py

示例8: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
                                                      K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        beta_1_t = K.pow(self.beta_1, t)
        beta_2_t = K.pow(self.beta_2, t)
        rho = 2 / (1 - self.beta_2) - 1
        rho_t = rho - 2 * t * beta_2_t / (1 - beta_2_t)
        r_t = K.sqrt(
            K.relu(rho_t - 4) * K.relu(rho_t - 2) * rho / ((rho - 4) * (rho - 2) * rho_t)
        )
        flag = K.cast(rho_t > 4, K.floatx())

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            mhat_t = m_t / (1 - beta_1_t)
            vhat_t = K.sqrt(v_t / (1 - beta_2_t))
            p_t = p - lr * mhat_t * (flag * r_t / (vhat_t + self.epsilon) + (1 - flag))

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:42,代碼來源:keras_radam.py

示例9: __call__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def __call__(self, y_true, y_pred):  # y_true, y_pred shape: (BS, row, col, ch * 2)
        data_true, generator_true = y_true[:, :, :, 0:3], y_true[:, :, :, 3:6]
        data_pred, generator_pred = y_pred[:, :, :, 0:3], y_pred[:, :, :, 3:6]
        loss_data = K.mean(K.abs(data_true - data_pred), axis=[1, 2, 3])
        loss_generator = K.mean(K.abs(generator_true - generator_pred), axis=[1, 2, 3])
        ret = loss_data - self.k_var * loss_generator

        # for updating values in each epoch, use `updates` mechanism
        # DiscriminatorModel collects Loss Function's updates attributes
        mean_loss_data = K.mean(loss_data)
        mean_loss_gen = K.mean(loss_generator)

        # update K
        new_k = self.k_var + self.lambda_k * (self.gamma * mean_loss_data - mean_loss_gen)
        new_k = K.clip(new_k, 0, 1)
        self.updates.append(K.update(self.k_var, new_k))

        # calculate M-Global
        m_global = mean_loss_data + K.abs(self.gamma * mean_loss_data - mean_loss_gen)
        self.updates.append(K.update(self.m_global_var, m_global))

        # let loss_real_x mean_loss_data
        self.updates.append(K.update(self.loss_real_x_var, mean_loss_data))

        # let loss_gen_x mean_loss_gen
        self.updates.append(K.update(self.loss_gen_x_var, mean_loss_gen))

        return ret 
開發者ID:mokemokechicken,項目名稱:keras_BEGAN,代碼行數:30,代碼來源:training.py

示例10: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        weights = self.get_weights()
        self.updates = [K.update_add(self.iterations, 1)]
        scaled_lr = self.lr
        w_norm = K.sqrt(K.sum([K.sum(K.square(weight))
                               for weight in weights]))
        g_norm = K.sqrt(K.sum([K.sum(K.square(grad))
                               for grad in grads]))
        scaled_lr = K.switch(K.greater(w_norm * g_norm, K.zeros([1])),
                             K.expand_dims((self.eeta * w_norm /
                                            (g_norm + self.weight_decay * w_norm +
                                             self.epsilon)) * self.lr),
                             K.ones([1]) * self.lr)
        if K.backend() == 'theano':
            scaled_lr = scaled_lr[0]  # otherwise theano raise broadcasting error
        # momentum
        moments = [K.zeros(K.int_shape(param), dtype=K.dtype(param))
                   for param in params]
        self.weights = [self.iterations] + moments
        for param, grad, moment in zip(params, grads, moments):
            v0 = (moment * self.momentum)
            v1 = scaled_lr * grad  # velocity
            veloc = v0 - v1
            self.updates.append(K.update(moment, veloc))

            if self.nesterov:
                new_param = param + (veloc * self.momentum) - v1
            else:
                new_param = param + veloc

            # Apply constraints.
            if getattr(param, 'constraint', None) is not None:
                new_param = param.constraint(new_param)

            self.updates.append(K.update(param, new_param))
        return self.updates 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:39,代碼來源:lars.py

示例11: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
                                                      K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vhats = [K.zeros(1) for _ in params]
        self.weights = [self.iterations] + ms + vs + vhats

        for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
            g2 = K.square(g)
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = v - (1. - self.beta_2) * K.sign(v - g2) * g2
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:36,代碼來源:yogi.py

示例12: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def __init__(self, lr=0.0025, beta_1=0.6, beta_2=0.999,
                 epsilon=1e-8, decay=0., **kwargs):
        super(FTML, self).__init__(**kwargs)
        self.__dict__.update(locals())
        self.iterations = K.variable(0)
        self.lr = K.variable(lr)
        self.beta_1 = K.variable(beta_1)
        self.beta_2 = K.variable(beta_2)
        self.decay = K.variable(decay)
        self.epsilon = epsilon
        self.inital_decay = decay 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:13,代碼來源:ftml.py

示例13: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.inital_decay > 0:
            lr *= (1. / (1. + self.decay * self.iterations))

        t = self.iterations + 1

        lr_t = lr / (1. - K.pow(self.beta_1, t))

        shapes = [K.int_shape(p) for p in params]
        zs = [K.zeros(shape) for shape in shapes]
        vs = [K.zeros(shape) for shape in shapes]
        ds = [K.zeros(shape) for shape in shapes]
        self.weights = [self.iterations] + zs + vs + ds

        for p, g, z, v, d in zip(params, grads, zs, vs, ds):
            v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g)
            d_t = (K.sqrt(v_t / (1. - K.pow(self.beta_2, t)))
                   + self.epsilon) / lr_t
            sigma_t = d_t - self.beta_1 * d
            z_t = self.beta_1 * z + (1. - self.beta_1) * g - sigma_t * p

            p_t = - z_t / d_t

            self.updates.append(K.update(z, z_t))
            self.updates.append(K.update(v, v_t))
            self.updates.append(K.update(d, d_t))

            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:41,代碼來源:ftml.py

示例14: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, accum_iters=10, **kwargs):
        super(AdamAccumulate, self).__init__(**kwargs)
        self.__dict__.update(locals())
        self.iterations = K.variable(0)
        self.lr = K.variable(lr)
        self.beta_1 = K.variable(beta_1)
        self.beta_2 = K.variable(beta_2)
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.accum_iters = K.variable(accum_iters) 
開發者ID:mogoweb,項目名稱:aiexamples,代碼行數:13,代碼來源:training.py

示例15: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import update [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations + 1)]

        t = self.iterations + 1
        lr_t = self.lr * K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        gs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = ms + vs
        
        flag = K.equal(t % self.accum_iters, 0)
        flag = K.cast(flag, dtype='float32')
        
        for p, g, m, v, gg in zip(params, grads, ms, vs, gs):

            gg_t = (1 - flag) * (gg + g)
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * (gg + flag * g) / self.accum_iters
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square((gg + flag * g) / self.accum_iters)
            p_t = p - flag * lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append((m, flag * m_t + (1 - flag) * m))
            self.updates.append((v, flag * v_t + (1 - flag) * v))
            self.updates.append((gg, gg_t))
            
            # apply constraints.
            new_p = p_t
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)
            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:mogoweb,項目名稱:aiexamples,代碼行數:34,代碼來源:training.py


注:本文中的keras.backend.update方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。