當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.transpose方法代碼示例

本文整理匯總了Python中keras.backend.transpose方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.transpose方法的具體用法?Python backend.transpose怎麽用?Python backend.transpose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.transpose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: acf_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def acf_loss(y_true, y_pred):
    """
    Loss based on the autocorrelation of residuals (reduce sum). n_lags=10 (fixed)
    """
    n_lags=5
    lags = range(1,2)
    residuals = (y_true - y_pred)
    # acf = []
    # for k in lags:
    #     mean = K.mean(residuals, axis=1, keepdims=True)
    #     autocorrelation_at_lag_k = K.square(K.sum((residuals[:,:-k] - mean) * (residuals[:,k:] - mean), axis=1) / \
    #                                         K.sum(K.square(residuals - mean), axis=1))
    #     acf.append(autocorrelation_at_lag_k)
    # acf = K.transpose(K.tf.convert_to_tensor(acf))
    mean = K.mean(residuals, axis=1, keepdims=True)
    autocorrelation_at_lag_k = K.square(K.sum((residuals[:, :-1] - mean) * (residuals[:, 1:] - mean), axis=1) / \
                                        K.sum(K.square(residuals - mean), axis=1))
    return K.mean(autocorrelation_at_lag_k) 
開發者ID:albertogaspar,項目名稱:dts,代碼行數:20,代碼來源:losses.py

示例2: gram_matrix

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def gram_matrix(x):
	"""
	Computes the outer-product of the input tensor x.

	Input
	-----
	- x: input tensor of shape (C x H x W)

	Returns
	-------
	- x . x^T

	Note that this can be computed efficiently if x is reshaped
	as a tensor of shape (C x H*W).
	"""
	# assert K.ndim(x) == 3
	if K.image_dim_ordering() == 'th':
		features = K.batch_flatten(x)
	else:
		features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
	return K.dot(features, K.transpose(features)) 
開發者ID:kevinzakka,項目名稱:style-transfer,代碼行數:23,代碼來源:losses.py

示例3: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def call(self, input_tensor, mask=None):
        x = input_tensor[0]
        y = input_tensor[1]
        mask = mask[0]

        y = K.transpose(K.dot(self.W, K.transpose(y)))
        y = K.expand_dims(y, axis=-2)
        y = K.repeat_elements(y, self.steps, axis=1)
        eij = K.sum(x * y, axis=-1)

        if self.bias:
            b = K.repeat_elements(self.b, self.steps, axis=0)
            eij += b

        eij = K.tanh(eij)
        a = K.exp(eij)

        if mask is not None:
            a *= K.cast(mask, K.floatx())

        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
        return a 
開發者ID:madrugado,項目名稱:Attention-Based-Aspect-Extraction,代碼行數:24,代碼來源:my_layers.py

示例4: deprocess_image

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def deprocess_image(x):
    if K.image_data_format() == 'channels_first':
        x = x.reshape((3, img_nrows, img_ncols))
        x = x.transpose((1, 2, 0))
    else:
        x = x.reshape((img_nrows, img_ncols, 3))
    # Remove zero-center by mean pixel
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68
    # 'BGR'->'RGB'
    x = x[:, :, ::-1]
    x = np.clip(x, 0, 255).astype('uint8')
    return x

# get tensor representations of our images 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:neural_style_transfer.py

示例5: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def call(self, input_tensor, mask=None):
        x = input_tensor[0]
        aspect = input_tensor[1]
        mask = mask[0]

        aspect = K.transpose(K.dot(self.W, K.transpose(aspect)))
        aspect = K.expand_dims(aspect, axis=-2)
        aspect = K.repeat_elements(aspect, self.steps, axis=1)
        eij = K.sum(x*aspect, axis=-1)

        if self.bias:
            b = K.repeat_elements(self.b, self.steps, axis=0)
            eij += b

        eij = K.tanh(eij)

        a = K.exp(eij)

        if mask is not None:
            a *= K.cast(mask, K.floatx())

        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        return a 
開發者ID:ruidan,項目名稱:Aspect-level-sentiment,代碼行數:26,代碼來源:my_layers.py

示例6: build

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[-1]
        
        if self.transpose:
            self.kernel = K.transpose(self.tie_to.kernel)
        else:
            self.kernel = self.tie_to.kernel
        
        if self.use_bias:
            self.bias = self.add_weight(shape=(self.units,),
                                        initializer=self.bias_initializer,
                                        name='bias',
                                        regularizer=self.bias_regularizer,
                                        constraint=self.bias_constraint,
                                        trainable=self.trainable)
        else:
            self.bias = None
        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        self.built = True 
開發者ID:vuptran,項目名稱:graph-representation-learning,代碼行數:22,代碼來源:custom.py

示例7: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def __init__(self, 
        vocab_size, 
        sequence_size,
        setting=None,
        checkpoint_path="",
        temperature=10,
        tying=False):

        super().__init__(vocab_size, sequence_size, setting, checkpoint_path)
        self.temperature = temperature
        self.tying = tying
        self.gamma = self.setting.gamma

        if tying:
            self.model.pop()  # remove activation
            self.model.pop()  # remove projection (use self embedding)
            self.model.add(Lambda(lambda x: K.dot(x, K.transpose(self.embedding.embeddings))))
            self.model.add(Activation("softmax")) 
開發者ID:icoxfog417,項目名稱:tying-wv-and-wc,代碼行數:20,代碼來源:augmented_model.py

示例8: augmented_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def augmented_loss(self, y_true, y_pred):
        _y_pred = Activation("softmax")(y_pred)
        loss = K.categorical_crossentropy(_y_pred, y_true)

        # y is (batch x seq x vocab)
        y_indexes = K.argmax(y_true, axis=2)  # turn one hot to index. (batch x seq)
        y_vectors = self.embedding(y_indexes)  # lookup the vector (batch x seq x vector_length)

        #v_length = self.setting.vector_length
        #y_vectors = K.reshape(y_vectors, (-1, v_length))
        #y_t = K.map_fn(lambda v: K.dot(self.embedding.embeddings, K.reshape(v, (-1, 1))), y_vectors)
        #y_t = K.squeeze(y_t, axis=2)  # unknown but necessary operation
        #y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size))

        # vector x embedding dot products (batch x seq x vocab)
        y_t = tf.tensordot(y_vectors, K.transpose(self.embedding.embeddings), 1)
        y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size))  # explicitly set shape
        y_t = K.softmax(y_t / self.temperature)
        _y_pred_t = Activation("softmax")(y_pred / self.temperature)
        aug_loss = kullback_leibler_divergence(y_t, _y_pred_t)
        loss += (self.gamma * self.temperature) * aug_loss
        return loss 
開發者ID:icoxfog417,項目名稱:tying-wv-and-wc,代碼行數:24,代碼來源:augmented_model.py

示例9: gram_matrix

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def gram_matrix(x):
    features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:6,代碼來源:3_nerual_style_transfer.py

示例10: rbf_moment_matching

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def rbf_moment_matching(y_true, y_pred, sigmas=[2, 5, 10, 20, 40, 80]):
    """Generative moment matching loss with RBF kernel.

    Reference: https://arxiv.org/abs/1502.02761
    """

    warnings.warn('Moment matching loss is still in development.')

    if len(K.int_shape(y_pred)) != 2 or len(K.int_shape(y_true)) != 2:
        raise ValueError('RBF Moment Matching function currently only works '
                         'for outputs with shape (batch_size, num_features).'
                         'Got y_true="%s" and y_pred="%s".' %
                         (str(K.int_shape(y_pred)), str(K.int_shape(y_true))))

    sigmas = list(sigmas) if isinstance(sigmas, (list, tuple)) else [sigmas]

    x = K.concatenate([y_pred, y_true], 0)

    # Performs dot product between all combinations of rows in X.
    xx = K.dot(x, K.transpose(x))  # (batch_size, batch_size)

    # Performs dot product of all rows with themselves.
    x2 = K.sum(x * x, 1, keepdims=True)  # (batch_size, None)

    # Gets exponent entries of the RBF kernel (without sigmas).
    exponent = xx - 0.5 * x2 - 0.5 * K.transpose(x2)

    # Applies all the sigmas.
    total_loss = None
    for sigma in sigmas:
        kernel_val = K.exp(exponent / sigma)
        loss = K.sum(kernel_val)
        total_loss = loss if total_loss is None else loss + total_loss

    return total_loss 
開發者ID:codekansas,項目名稱:gandlf,代碼行數:37,代碼來源:losses.py

示例11: yolo_head

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def yolo_head(feats, anchors, num_classes, n):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    conv_dims = K.shape(feats)[1:3]  # assuming channels last
    # In YOLO the height index is the inner most iteration.
    conv_height_index = K.arange(0, stop=conv_dims[0])
    conv_width_index = K.arange(0, stop=conv_dims[1])
    conv_height_index = K.tile(conv_height_index, [conv_dims[1]])

    conv_width_index = K.tile(K.expand_dims(conv_width_index, 0), [conv_dims[0], 1])
    conv_width_index = K.flatten(K.transpose(conv_width_index))
    conv_index = K.transpose(K.stack([conv_height_index, conv_width_index]))
    conv_index = K.reshape(conv_index, [1, conv_dims[0], conv_dims[1], 1, 2])
    conv_index = K.cast(conv_index, K.dtype(feats))

    feats = K.reshape(feats, [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5])
    conv_dims = K.cast(K.reshape(conv_dims, [1, 1, 1, 1, 2]), K.dtype(feats))

    box_xy = K.sigmoid(feats[..., :2])
    box_wh = K.exp(feats[..., 2:4])
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    # Adjust preditions to each spatial grid point and anchor size.
    # Note: YOLO iterates over height index before width index.
    # TODO: It works with +1, don't know why.
    box_xy = (box_xy + conv_index + 1) / conv_dims
    # TODO: Input layer size
    box_wh = box_wh * anchors_tensor / conv_dims / {0:32, 1:16, 2:8}[n]

    return [box_xy, box_wh, box_confidence, box_class_probs] 
開發者ID:kaka-lin,項目名稱:object-detection,代碼行數:36,代碼來源:model.py

示例12: grammian_matrix

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def grammian_matrix(matrix):
    flattened_matrix = K.batch_flatten(K.permute_dimensions(matrix, (2, 0, 1)))
    matrix_transpose_dot = K.dot(flattened_matrix, K.transpose(flattened_matrix))
    element_count = matrix.get_shape().num_elements()
    return matrix_transpose_dot / element_count 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-for-Computer-Vision,代碼行數:7,代碼來源:1_style_transfer.py

示例13: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def call(self, inputs, training=None):
        def _l2normalize(v, eps=1e-12):
            return v / (K.sum(v ** 2) ** 0.5 + eps)
        def power_iteration(W, u):
            _u = u
            _v = _l2normalize(K.dot(_u, K.transpose(W)))
            _u = _l2normalize(K.dot(_v, W))
            return _u, _v
        W_shape = self.kernel.shape.as_list()
        #Flatten the Tensor
        W_reshaped = K.reshape(self.kernel, [-1, W_shape[-1]])
        _u, _v = power_iteration(W_reshaped, self.u)
        #Calculate Sigma
        sigma=K.dot(_v, W_reshaped)
        sigma=K.dot(sigma, K.transpose(_u))
        #normalize it
        W_bar = W_reshaped / sigma
        #reshape weight tensor
        if training in {0, False}:
            W_bar = K.reshape(W_bar, W_shape)
        else:
            with tf.control_dependencies([self.u.assign(_u)]):
                 W_bar = K.reshape(W_bar, W_shape)  
        output = K.dot(inputs, W_bar)
        if self.use_bias:
            output = K.bias_add(output, self.bias, data_format='channels_last')
        if self.activation is not None:
            output = self.activation(output)
        return output 
開發者ID:emilwallner,項目名稱:Coloring-greyscale-images,代碼行數:31,代碼來源:sn.py

示例14: power_iteration

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def power_iteration(self, u, W):
        '''
        Accroding the paper, we only need to do power iteration one time.
        '''
        v = self._l2normalize(K.dot(u, K.transpose(W)))
        u = self._l2normalize(K.dot(v, W))
        return u, v 
開發者ID:emilwallner,項目名稱:Coloring-greyscale-images,代碼行數:9,代碼來源:sn.py

示例15: gram_matrix

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import transpose [as 別名]
def gram_matrix(x, norm_by_channels=False):
    '''
    Returns the Gram matrix of the tensor x.
    '''
    if K.ndim(x) == 3:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
        shape = K.shape(x)
        C, H, W = shape[0], shape[1], shape[2]
        gram = K.dot(features, K.transpose(features))
    elif K.ndim(x) == 4:
        # Swap from (H, W, C) to (B, C, H, W)
        x = K.permute_dimensions(x, (0, 3, 1, 2))
        shape = K.shape(x)
        B, C, H, W = shape[0], shape[1], shape[2], shape[3]
        # Reshape as a batch of 2D matrices with vectorized channels
        features = K.reshape(x, K.stack([B, C, H*W]))
        # This is a batch of Gram matrices (B, C, C).
        gram = K.batch_dot(features, features, axes=2)
    else:
        raise ValueError('The input tensor should be either a 3d (H, W, C) or 4d (B, H, W, C) tensor.')
    # Normalize the Gram matrix
    if norm_by_channels:
        denominator = C * H * W # Normalization from Johnson
    else:
        denominator = H * W # Normalization from Google
    gram = gram /  K.cast(denominator, x.dtype)

    return gram 
開發者ID:robertomest,項目名稱:neural-style-keras,代碼行數:30,代碼來源:training.py


注:本文中的keras.backend.transpose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。