當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.tile方法代碼示例

本文整理匯總了Python中keras.backend.tile方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.tile方法的具體用法?Python backend.tile怎麽用?Python backend.tile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.tile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_constants

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def get_constants(self, x):
    constants = []
    if 0 < self.dropout_U < 1:
      ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, self.output_dim))
      B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
      constants.append(B_U)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])

    if 0 < self.dropout_W < 1:
      input_shape = self.input_spec[0].shape
      input_dim = input_shape[-1]
      ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, input_dim))
      B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
      constants.append(B_W)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])
    return constants 
開發者ID:LaurentMazare,項目名稱:deep-models,代碼行數:22,代碼來源:rhn.py

示例2: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def call(self, inputs, **kwargs):
        # (batch_size, 1, input_num_capsule, input_dim_capsule)
        expand_inputs = K.expand_dims(inputs, axis=1)
        # (batch_size, num_capsule, input_num_capsule, input_dim_capsule)
        expand_inputs = K.tile(expand_inputs, (1, self.num_capsule, 1, 1))
        # (batch_size, num_capsule, input_num_capsule, dim_capsule)
        u_hat = K.map_fn(lambda x: K.batch_dot(x, self.W, axes=[2, 3]), expand_inputs)

        if self.num_routing <= 0:
            self.num_routing = 3
        # (batch_size, num_capsule, input_num_capsule)
        b = K.zeros((K.shape(u_hat)[0], self.num_capsule, self.input_num_capsule))
        for i in xrange(self.num_routing):
            # (batch_size, num_capsule, input_num_capsule)
            c = softmax(b, axis=1)
            # (batch_size, num_capsule, dim_capsule)
            s = K.batch_dot(c, u_hat, axes=[2, 2])
            squashed_s = squash(s)
            if i < self.num_routing - 1:
                # (batch_size, num_capsule, input_num_capsule)
                b += K.batch_dot(squashed_s, u_hat, axes=[2, 3])
        return squashed_s 
開發者ID:l11x0m7,項目名稱:CapsNet,代碼行數:24,代碼來源:capsule.py

示例3: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def call(self,x,training=None):
        deta1 = 0.3
        deta2 = 0.3
        deta3 = 0.3
        seed = np.random.randint(1, 10e6)
        rng = RandomStreams(seed=seed)
        theta1 = rng.uniform(size=(x.shape[0],1),low=-deta1,high=deta1,dtype='float32')
        theta2 = rng.uniform(size=(x.shape[0],1),low=-deta2,high=deta2,dtype='float32')
        theta3 = rng.uniform(size=(x.shape[0],1),low=-deta3,high=deta3,dtype='float32')
        theta = K.concatenate([theta1,theta2,theta3],axis=-1)
        theta = K.tile(theta,x.shape[1])
        theta = theta.reshape((x.shape[0], x.shape[1], 3))

        theta = theta.reshape((theta.shape[0]*theta.shape[1], theta.shape[2]))
        M = _fusion(theta)
        output = _transform_rot(M, x)

        return K.in_train_phase(output,x,training = training) 
開發者ID:microsoft,項目名稱:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代碼行數:20,代碼來源:transform_rnn.py

示例4: get_constants

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def get_constants(self, x):
		constants = []
		if 0 < self.dropout_U < 1:
			ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
			ones = K.tile(ones, (1, self.hidden_recurrent_dim))
			B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
			constants.append(B_U)
		else:
			constants.append(K.cast_to_floatx(1.))
        
		if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
			input_shape = self.input_spec[0].shape
			input_dim = input_shape[-1]
			ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
			ones = K.tile(ones, (1, input_dim))
			B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
			constants.append(B_W)
		else:
			constants.append(K.cast_to_floatx(1.))

		return constants 
開發者ID:bnsnapper,項目名稱:keras_bn_library,代碼行數:23,代碼來源:rnnrbm.py

示例5: get_constants

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def get_constants(self, x):
		constants = []
		if 0 < self.dropout_U < 1:
			ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
			ones = K.tile(ones, (1, self.input_dim))
			B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
			constants.append(B_U)
		else:
			constants.append([K.cast_to_floatx(1.) for _ in range(4)])

		if 0 < self.dropout_W < 1:
			input_shape = K.int_shape(x)
			input_dim = input_shape[-1]
			ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
			ones = K.tile(ones, (1, int(input_dim)))
			B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
			constants.append(B_W)
		else:
			constants.append([K.cast_to_floatx(1.) for _ in range(4)])
		return constants 
開發者ID:bnsnapper,項目名稱:keras_bn_library,代碼行數:22,代碼來源:recurrent.py

示例6: get_constants

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants 
開發者ID:SigmaQuan,項目名稱:NTM-Keras,代碼行數:22,代碼來源:lstm2ntm.py

示例7: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def call(self, inputs, training=None):
        inputs_expand = K.expand_dims(inputs, 1)
        
        inputs_tiled = K.tile(inputs_expand, [1, self.num_capsule, 1, 1])
        
        if(self.channels!=0):
            W2 = K.repeat_elements(self.W,int(self.input_num_capsule/self.channels),1)
        else:
            W2 = self.W
            
        inputs_hat = K.map_fn(lambda x: K.batch_dot(x, W2, [2, 3]) , elems=inputs_tiled)

        b = tf.zeros(shape=[K.shape(inputs_hat)[0], self.num_capsule, self.input_num_capsule])

        assert self.routings > 0, 'The routings should be > 0.'
        for i in range(self.routings):

            c = tf.nn.softmax(b, dim=1)
            outputs = squash(K.batch_dot(c, inputs_hat, [2, 2])+ self.B)

            if i < self.routings - 1:
                b += K.batch_dot(outputs, inputs_hat, [2, 3])

        return outputs 
開發者ID:vinojjayasundara,項目名稱:textcaps,代碼行數:26,代碼來源:capsulelayers.py

示例8: tf_normal

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def tf_normal(y_true, mu, sigma, pi):

    rollout_length = K.shape(y_true)[1]
    y_true = K.tile(y_true,(1,1,GAUSSIAN_MIXTURES))
    y_true = K.reshape(y_true, [-1, rollout_length, GAUSSIAN_MIXTURES,Z_DIM])

    oneDivSqrtTwoPI = 1 / math.sqrt(2*math.pi)
    result = y_true - mu
#   result = K.permute_dimensions(result, [2,1,0])
    result = result * (1 / (sigma + 1e-8))
    result = -K.square(result)/2
    result = K.exp(result) * (1/(sigma + 1e-8))*oneDivSqrtTwoPI
    result = result * pi
    result = K.sum(result, axis=2) #### sum over gaussians
    #result = K.prod(result, axis=2) #### multiply over latent dims
    return result 
開發者ID:llSourcell,項目名稱:world_models,代碼行數:18,代碼來源:arch.py

示例9: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def call(self, inputs, mask=None, **kwargs):
        if isinstance(inputs, list):
            query, key, value = inputs
        else:
            query = key = value = inputs
        if isinstance(mask, list):
            mask = mask[1]
        feature_dim = K.shape(query)[-1]
        e = K.batch_dot(query, key, axes=2) / K.sqrt(K.cast(feature_dim, dtype=K.floatx()))
        e = K.exp(e - K.max(e, axis=-1, keepdims=True))
        if self.history_only:
            query_len, key_len = K.shape(query)[1], K.shape(key)[1]
            indices = K.tile(K.expand_dims(K.arange(key_len), axis=0), [query_len, 1])
            upper = K.expand_dims(K.arange(key_len), axis=-1)
            e *= K.expand_dims(K.cast(indices <= upper, K.floatx()), axis=0)
        if mask is not None:
            e *= K.cast(K.expand_dims(mask, axis=-2), K.floatx())
        a = e / (K.sum(e, axis=-1, keepdims=True) + K.epsilon())
        v = K.batch_dot(a, value)
        if self.return_attention:
            return [v, a]
        return v 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:24,代碼來源:scale_dot_product_attention.py

示例10: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def call(self, x, reconstruction=False):
        self.reconstruction = reconstruction
        self.output_dim = K.int_shape(x)[-1]
        cross_channel_interp = self.cross_channel_interp
        y = x[:, :self.d_dim, :]
        w = x[:, self.d_dim:2*self.d_dim, :]
        intensity = K.exp(w)
        y = tf.transpose(y, perm=[0, 2, 1])
        w = tf.transpose(w, perm=[0, 2, 1])
        w2 = w
        w = K.tile(w[:, :, :, None], (1, 1, 1, self.d_dim))
        den = K.logsumexp(w, axis=2)
        w = K.exp(w2 - den)
        mean = K.mean(y, axis=1)
        mean = K.tile(mean[:, None, :], (1, self.output_dim, 1))
        w2 = K.dot(w*(y - mean), cross_channel_interp) + mean
        rep1 = tf.transpose(w2, perm=[0, 2, 1])
        if reconstruction is False:
            y_trans = x[:, 2*self.d_dim:3*self.d_dim, :]
            y_trans = y_trans - rep1  # subtracting smooth from transient part
            rep1 = tf.concat([rep1, intensity, y_trans], 1)
        return rep1 
開發者ID:mlds-lab,項目名稱:interp-net,代碼行數:24,代碼來源:interpolation_layer.py

示例11: test_tile

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def test_tile(self):
        shape = (3, 4)
        arr = np.arange(np.prod(shape)).reshape(shape)
        check_single_tensor_operation('tile', arr, BACKENDS, n=[2, 1])
        check_single_tensor_operation('tile', (2, 5), BACKENDS, n=[5, 2])

        # test theano shape inference when
        # input shape has None entries
        if K.backend() == 'theano':
            x = K.placeholder(shape=(None, 4))
            n = 2
            y = K.tile(x, n)
            assert y._keras_shape == (None, 8)
            n = (4, 3)
            y = K.tile(x, n)
            assert y._keras_shape == (None, 12) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:backend_test.py

示例12: tile_vector_as_image_channels

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def tile_vector_as_image_channels(vector_op, image_shape):
    """
    Takes a vector of length n and an image shape BHWC,
    and repeat the vector as channels at each pixel.

    # Params

      vector_op: A tensor vector to tile.
      image_shape: A list of integers [width, height] with the desired dimensions.
    """
    with K.name_scope('tile_vector_as_image_channels'):
        ivs = K.shape(vector_op)
        # reshape the vector into a single pixel
        vector_pixel_shape = [ivs[0], 1, 1, ivs[1]]
        vector_op = K.reshape(vector_op, vector_pixel_shape)
        # tile the pixel into a full image
        tile_dimensions = [1, image_shape[1], image_shape[2], 1]
        vector_op = K.tile(vector_op, tile_dimensions)
        if K.backend() is 'tensorflow':
            output_shape = [ivs[0], image_shape[1], image_shape[2], ivs[1]]
            vector_op.set_shape(output_shape)
        return vector_op 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:24,代碼來源:hypertree_model.py

示例13: concat_images_with_tiled_vector

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def concat_images_with_tiled_vector(images, vector):
    """Combine a set of images with a vector, tiling the vector at each pixel in the images and concatenating on the channel axis.

    # Params

        images: list of images with the same dimensions
        vector: vector to tile on each image. If you have
            more than one vector, simply concatenate them
            all before calling this function.

    # Returns

    """
    with K.name_scope('concat_images_with_tiled_vector'):
        if not isinstance(images, list):
            images = [images]
        image_shape = K.int_shape(images[0])
        tiled_vector = tile_vector_as_image_channels(vector, image_shape)
        images.append(tiled_vector)
        combined = K.concatenate(images)

        return combined 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:24,代碼來源:hypertree_model.py

示例14: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def call(self, x, mask=None):
        uit = K.tanh(K.dot(x, self.Ws1))
        ait = K.dot(uit, self.Ws2)
        ait = K.permute_dimensions(ait, (0, 2, 1))
        A = K.softmax(ait, axis=1)
        M = K.batch_dot(A, x)
        if self.punish:
            A_T = K.permute_dimensions(A, (0, 2, 1))
            tile_eye = K.tile(K.eye(self.weight_ws2), [self.batch_size, 1])
            tile_eye = K.reshape(
                tile_eye, shape=[-1, self.weight_ws2, self.weight_ws2])
            AA_T = K.batch_dot(A, A_T) - tile_eye
            P = K.l2_normalize(AA_T, axis=(1, 2))
            return M, P
        else:
            return M 
開發者ID:stevewyl,項目名稱:nlp_toolkit,代碼行數:18,代碼來源:multi_dim_attention.py

示例15: get_constants

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import tile [as 別名]
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants 
開發者ID:wentaozhu,項目名稱:recurrent-attention-for-QA-SQUAD-based-on-keras,代碼行數:22,代碼來源:QnA.py


注:本文中的keras.backend.tile方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。