本文整理匯總了Python中keras.backend.sum方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.sum方法的具體用法?Python backend.sum怎麽用?Python backend.sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: step
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def step(self, x, states):
h = states[0]
# states[1] necessary?
# equals K.dot(X, self._W1) + self._b2 with X.shape=[bs, T, input_dim]
total_x_prod = states[-1]
# comes from the constants (equals the input sequence)
X = states[-2]
# expand dims to add the vector which is only valid for this time step
# to total_x_prod which is valid for all time steps
hw = K.expand_dims(K.dot(h, self._W2), 1)
additive_atn = total_x_prod + hw
attention = K.softmax(K.dot(additive_atn, self._V), axis=1)
x_weighted = K.sum(attention * X, [1])
x = K.dot(K.concatenate([x, x_weighted], 1), self._W3) + self._b3
h, new_states = self.layer.cell.call(x, states[:-2])
return h, new_states
示例2: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def call(self, x, mask=None):
# computes a probability distribution over the timesteps
# uses 'max trick' for numerical stability
# reshape is done to avoid issue with Tensorflow
# and 1-dimensional weights
logits = K.dot(x, self.W)
x_shape = K.shape(x)
logits = K.reshape(logits, (x_shape[0], x_shape[1]))
ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True))
# masked timesteps have zero weight
if mask is not None:
mask = K.cast(mask, K.floatx())
ai = ai * mask
att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon())
weighted_input = x * K.expand_dims(att_weights)
result = K.sum(weighted_input, axis=1)
if self.return_attention:
return [result, att_weights]
return result
示例3: build_generator
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def build_generator():
"""Builds the big generator model."""
latent = keras.layers.Input((100,), name='latent')
image_class = keras.layers.Input((10,), dtype='float32',
name='image_class')
d = keras.layers.Dense(100)(image_class)
merged = keras.layers.merge([latent, d], mode='sum')
hidden = keras.layers.Dense(512)(merged)
hidden = keras.layers.LeakyReLU()(hidden)
hidden = keras.layers.Dense(512)(hidden)
hidden = keras.layers.LeakyReLU()(hidden)
output_layer = keras.layers.Dense(28 * 28,
activation='tanh')(hidden)
fake_image = keras.layers.Reshape((28, 28, 1))(output_layer)
return keras.models.Model(input=[latent, image_class],
output=fake_image)
示例4: reverse_generator
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def reverse_generator(generator, X_sample, y_sample, title):
"""Gradient descent to map images back to their latent vectors."""
latent_vec = np.random.normal(size=(1, 100))
# Function for figuring out how to bump the input.
target = K.placeholder()
loss = K.sum(K.square(generator.outputs[0] - target))
grad = K.gradients(loss, generator.inputs[0])[0]
update_fn = K.function(generator.inputs + [target], [grad])
# Repeatedly apply the update rule.
xs = []
for i in range(60):
print('%d: latent_vec mean=%f, std=%f'
% (i, np.mean(latent_vec), np.std(latent_vec)))
xs.append(generator.predict_on_batch([latent_vec, y_sample]))
for _ in range(10):
update_vec = update_fn([latent_vec, y_sample, X_sample])[0]
latent_vec -= update_vec * update_rate
# Plots the samples.
xs = np.concatenate(xs, axis=0)
plot_as_gif(xs, X_sample, title)
示例5: gradient_penalty_loss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def gradient_penalty_loss(self, y_true, y_pred, averaged_samples):
"""
Computes gradient penalty based on prediction and weighted real / fake samples
"""
gradients = K.gradients(y_pred, averaged_samples)[0]
# compute the euclidean norm by squaring ...
gradients_sqr = K.square(gradients)
# ... summing over the rows ...
gradients_sqr_sum = K.sum(gradients_sqr,
axis=np.arange(1, len(gradients_sqr.shape)))
# ... and sqrt
gradient_l2_norm = K.sqrt(gradients_sqr_sum)
# compute lambda * (1 - ||grad||)^2 still for each single sample
gradient_penalty = K.square(1 - gradient_l2_norm)
# return the mean as loss over all the batch samples
return K.mean(gradient_penalty)
示例6: rpn_loss_regr
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def rpn_loss_regr(num_anchors):
def rpn_loss_regr_fixed_num(y_true, y_pred):
if K.image_dim_ordering() == 'th':
x = y_true[:, 4 * num_anchors:, :, :] - y_pred
x_abs = K.abs(x)
x_bool = K.less_equal(x_abs, 1.0)
return lambda_rpn_regr * K.sum(
y_true[:, :4 * num_anchors, :, :] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :4 * num_anchors, :, :])
else:
x = y_true[:, :, :, 4 * num_anchors:] - y_pred
x_abs = K.abs(x)
x_bool = K.cast(K.less_equal(x_abs, 1.0), tf.float32)
return lambda_rpn_regr * K.sum(
y_true[:, :, :, :4 * num_anchors] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :, :, :4 * num_anchors])
return rpn_loss_regr_fixed_num
示例7: audio_discriminate_loss2
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def audio_discriminate_loss2(gamma=0.1,beta = 2*0.1,num_speaker=2):
def loss_func(S_true,S_pred,gamma=gamma,beta=beta,num_speaker=num_speaker):
sum_mtr = K.zeros_like(S_true[:,:,:,:,0])
for i in range(num_speaker):
sum_mtr += K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,i])
for j in range(num_speaker):
if i != j:
sum_mtr -= gamma*(K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,j]))
for i in range(num_speaker):
for j in range(i+1,num_speaker):
#sum_mtr -= beta*K.square(S_pred[:,:,:,i]-S_pred[:,:,:,j])
#sum_mtr += beta*K.square(S_true[:,:,:,:,i]-S_true[:,:,:,:,j])
pass
#sum = K.sum(K.maximum(K.flatten(sum_mtr),0))
loss = K.mean(K.flatten(sum_mtr))
return loss
return loss_func
示例8: gen_adv_loss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def gen_adv_loss(logits, y, loss='logloss', mean=False):
"""
Generate the loss function.
"""
if loss == 'training':
# use the model's output instead of the true labels to avoid
# label leaking at training time
y = K.cast(K.equal(logits, K.max(logits, 1, keepdims=True)), "float32")
y = y / K.sum(y, 1, keepdims=True)
out = K.categorical_crossentropy(y, logits, from_logits=True)
elif loss == 'logloss':
out = K.categorical_crossentropy(y, logits, from_logits=True)
else:
raise ValueError("Unknown loss: {}".format(loss))
if mean:
out = K.mean(out)
# else:
# out = K.sum(out)
return out
示例9: gen_adv_loss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def gen_adv_loss(logits, y, loss='logloss', mean=False):
"""
Generate the loss function.
"""
if loss == 'training':
# use the model's output instead of the true labels to avoid
# label leaking at training time
y = K.cast(K.equal(logits, K.max(logits, 1, keepdims=True)), "float32")
y = y / K.sum(y, 1, keepdims=True)
out = K.categorical_crossentropy(logits, y, from_logits=True)
elif loss == 'logloss':
# out = K.categorical_crossentropy(logits, y, from_logits=True)
out = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)
out = tf.reduce_mean(out)
else:
raise ValueError("Unknown loss: {}".format(loss))
if mean:
out = tf.mean(out)
# else:
# out = K.sum(out)
return out
示例10: optimizer
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def optimizer(self):
a = K.placeholder(shape=(None,), dtype='int32')
y = K.placeholder(shape=(None,), dtype='float32')
prediction = self.model.output
a_one_hot = K.one_hot(a, self.action_size)
q_value = K.sum(prediction * a_one_hot, axis=1)
error = K.abs(y - q_value)
quadratic_part = K.clip(error, 0.0, 1.0)
linear_part = error - quadratic_part
loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)
optimizer = RMSprop(lr=0.00025, epsilon=0.01)
updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
train = K.function([self.model.input, a, y], [loss], updates=updates)
return train
# 상태가 입력, 큐함수가 출력인 인공신경망 생성
示例11: actor_optimizer
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def actor_optimizer(self):
action = K.placeholder(shape=[None, self.action_size])
advantages = K.placeholder(shape=[None, ])
policy = self.actor.output
# 정책 크로스 엔트로피 오류함수
action_prob = K.sum(action * policy, axis=1)
cross_entropy = K.log(action_prob + 1e-10) * advantages
cross_entropy = -K.sum(cross_entropy)
# 탐색을 지속적으로 하기 위한 엔트로피 오류
entropy = K.sum(policy * K.log(policy + 1e-10), axis=1)
entropy = K.sum(entropy)
# 두 오류함수를 더해 최종 오류함수를 만듬
loss = cross_entropy + 0.01 * entropy
optimizer = RMSprop(lr=self.actor_lr, rho=0.99, epsilon=0.01)
updates = optimizer.get_updates(self.actor.trainable_weights, [],loss)
train = K.function([self.actor.input, action, advantages],
[loss], updates=updates)
return train
# 가치신경망을 업데이트하는 함수
示例12: optimizer
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def optimizer(self):
action = K.placeholder(shape=[None, 5])
discounted_rewards = K.placeholder(shape=[None, ])
# 크로스 엔트로피 오류함수 계산
action_prob = K.sum(action * self.model.output, axis=1)
cross_entropy = K.log(action_prob) * discounted_rewards
loss = -K.sum(cross_entropy)
# 정책신경망을 업데이트하는 훈련함수 생성
optimizer = Adam(lr=self.learning_rate)
updates = optimizer.get_updates(self.model.trainable_weights,[],
loss)
train = K.function([self.model.input, action, discounted_rewards], [],
updates=updates)
return train
# 정책신경망으로 행동 선택
示例13: optimizer
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def optimizer(self):
a = K.placeholder(shape=(None, ), dtype='int32')
y = K.placeholder(shape=(None, ), dtype='float32')
py_x = self.model.output
a_one_hot = K.one_hot(a, self.action_size)
q_value = K.sum(py_x * a_one_hot, axis=1)
error = K.abs(y - q_value)
quadratic_part = K.clip(error, 0.0, 1.0)
linear_part = error - quadratic_part
loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)
optimizer = RMSprop(lr=0.00025, epsilon=0.01)
updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
train = K.function([self.model.input, a, y], [loss], updates=updates)
return train
# approximate Q function using Convolution Neural Network
# state is input and Q Value of each action is output of network
示例14: optimizer
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def optimizer(self):
a = K.placeholder(shape=(None,), dtype='int32')
y = K.placeholder(shape=(None,), dtype='float32')
py_x = self.model.output
a_one_hot = K.one_hot(a, self.action_size)
q_value = K.sum(py_x * a_one_hot, axis=1)
error = K.abs(y - q_value)
quadratic_part = K.clip(error, 0.0, 1.0)
linear_part = error - quadratic_part
loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)
optimizer = RMSprop(lr=0.00025, epsilon=0.01)
updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
train = K.function([self.model.input, a, y], [loss], updates=updates)
return train
# approximate Q function using Convolution Neural Network
# state is input and Q Value of each action is output of network
示例15: actor_optimizer
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sum [as 別名]
def actor_optimizer(self):
action = K.placeholder(shape=[None, self.action_size])
advantages = K.placeholder(shape=[None, ])
policy = self.actor.output
good_prob = K.sum(action * policy, axis=1)
eligibility = K.log(good_prob + 1e-10) * advantages
actor_loss = -K.sum(eligibility)
entropy = K.sum(policy * K.log(policy + 1e-10), axis=1)
entropy = K.sum(entropy)
loss = actor_loss + 0.01*entropy
optimizer = RMSprop(lr=self.actor_lr, rho=0.99, epsilon=0.01)
updates = optimizer.get_updates(self.actor.trainable_weights, [], loss)
train = K.function([self.actor.input, action, advantages], [loss], updates=updates)
return train
# make loss function for Value approximation