當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.stack方法代碼示例

本文整理匯總了Python中keras.backend.stack方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.stack方法的具體用法?Python backend.stack怎麽用?Python backend.stack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.stack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: GenerateMCSamples

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def GenerateMCSamples(inp, layers, K_mc=20):
    if K_mc == 1:
        return apply_layers(inp, layers)
    output_list = []
    for _ in xrange(K_mc):
        output_list += [apply_layers(inp, layers)]  # THIS IS BAD!!! we create new dense layers at every call!!!!
    def pack_out(output_list):
        #output = K.pack(output_list) # K_mc x nb_batch x nb_classes
        output = K.stack(output_list) # K_mc x nb_batch x nb_classes
        return K.permute_dimensions(output, (1, 0, 2)) # nb_batch x K_mc x nb_classes
    def pack_shape(s):
        s = s[0]
        assert len(s) == 2
        return (s[0], K_mc, s[1])
    out = Lambda(pack_out, output_shape=pack_shape)(output_list)
    return out

# evaluation for classification tasks 
開發者ID:YingzhenLi,項目名稱:Dropout_BBalpha,代碼行數:20,代碼來源:BBalpha_dropout.py

示例2: posterior

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def posterior(atlas_full, ull_pred, flow, fns, max_feats):
    """
    gpu-based implementation of posterior
    given original full atlas and unnormalized log likelihood, warps atlas and computes (normalized) posterior

    variables should be normal format, *not* keras format (i.e. not in batch)

    unfortunately, since full atlases can be quite large (many labels),
    we loop over groups of at most `max_feats` labels and stack at the end
    """

    # run through label groups
    # creating lists and concatenating at the end seems to be more efficient than
    # filling in rows of data of a large array.
    post = []
    warped_atlas = []
    for li, i in enumerate(range(0, atlas_full.shape[-1], max_feats)):
        slc = slice(i, min(i + max_feats, atlas_full.shape[-1]))
        po, wa = fns[li]([atlas_full[...,slc], ull_pred, flow])
        post.append(po)
        warped_atlas.append(wa)

    return np.concatenate(post, -1), np.concatenate(warped_atlas, -1) 
開發者ID:voxelmorph,項目名稱:voxelmorph,代碼行數:25,代碼來源:test_unsupervised_segmentation.py

示例3: MakeStacked

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def MakeStacked(ins, x, num_to_stack):
    '''
    Stacked latent representations -- for temporal convolutions in particular
    '''
    new_ins = []
    new_xs = []
    x = Model(ins, x)
    for i in range(num_to_stack):
        new_x_ins = []
        for inx in ins:
            new_x_ins.append(Input(inx.shape[1:]))
        new_ins += new_x_ins
        new_xs.append(x(new_x_ins))
    x = Lambda(lambda x: K.stack(x,axis=2))(new_xs)

    return new_ins, x 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:18,代碼來源:robot_multi_models.py

示例4: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def call(self, inputs, **kwargs):
        if isinstance(inputs, list):  # true label is provided with shape = [None, n_classes], i.e. one-hot code.
            assert len(inputs) == 2
            inputs, a = inputs
            mask = K.argmax(a, 1)
        else:  # if no true label, mask by the max length of capsules. Mainly used for prediction
            # compute lengths of capsules
            x = K.sqrt(K.sum(K.square(inputs), -1))
            # generate the mask which is a one-hot code.
            # mask.shape=[None, n_classes]=[None, num_capsule]
            mask = K.argmax(x, 1)

        increasing = tf.range(start=0, limit=tf.shape(inputs)[0], delta=1)
        m = tf.stack([increasing, tf.cast(mask, tf.int32)], axis=1)
        # inputs.shape=[None, num_capsule, dim_capsule]
        # mask.shape=[None, num_capsule]
        # masked.shape=[None, num_capsule * dim_capsule]
        # x1 = tf.transpose(inputs, (0))
        masked = tf.gather_nd(inputs, m)

        return masked 
開發者ID:brjathu,項目名稱:deepcaps,代碼行數:23,代碼來源:capslayers.py

示例5: loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def loss(self, y_true, y_pred):
        from keras import backend as K
        y_true = K.flatten(y_true)

        output_indices = y_true // 10
        updated_y_true = y_true - (10 * output_indices)

        # We index into y_pred using flattened indices since Keras backend
        # supports gather but has no equivalent of tf.gather_nd:
        ordinals = K.arange(K.shape(y_true)[0])
        flattened_indices = (
            ordinals * y_pred.shape[1] + K.cast(output_indices, "int32"))
        updated_y_pred = K.gather(K.flatten(y_pred), flattened_indices)

        # Alternative implementation using tensorflow, which could be used if
        # we drop support for other backends:
        # import tensorflow as tf
        # indexer = K.stack([
        #     ordinals,
        #     K.cast(output_indices, "int32")
        # ], axis=-1)
        #updated_y_pred = tf.gather_nd(y_pred, indexer)

        return MSEWithInequalities().loss(updated_y_true, updated_y_pred) 
開發者ID:openvax,項目名稱:mhcflurry,代碼行數:26,代碼來源:custom_loss.py

示例6: output_sampling

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def output_sampling(self, output, rand_matrix):
        # Generates a sampled selection based on raw output state vector
        # Creates a cdf vector and compares against a randomly generated vector
        # Requires a pre-generated rand_matrix (i.e. generated outside step function)

        sampled_output = output / K.sum(output, axis=-1, keepdims=True)  # (batch_size, self.units)
        mod_sampled_output = sampled_output / K.exp(self.temperature)
        norm_exp_sampled_output = mod_sampled_output / K.sum(mod_sampled_output, axis=-1, keepdims=True)

        cdf_vector = K.cumsum(norm_exp_sampled_output, axis=-1)
        cdf_minus_vector = cdf_vector - norm_exp_sampled_output

        rand_matrix = K.stack([rand_matrix], axis=0)
        rand_matrix = K.stack([rand_matrix], axis=2)

        compared_greater_output = K.cast(K.greater(cdf_vector, rand_matrix), dtype='float32')
        compared_lesser_output = K.cast(K.less(cdf_minus_vector, rand_matrix), dtype='float32')

        final_output = compared_greater_output * compared_lesser_output
        return final_output 
開發者ID:aspuru-guzik-group,項目名稱:chemical_vae,代碼行數:22,代碼來源:tgru_k2_gpu.py

示例7: yolo_eval

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def yolo_eval(yolo_outputs,
              image_shape,
              max_boxes=10,
              score_threshold=.6,
              iou_threshold=.5):
    """Evaluate YOLO model on given input batch and return filtered boxes."""
    box_xy, box_wh, box_confidence, box_class_probs = yolo_outputs
    boxes = yolo_boxes_to_corners(box_xy, box_wh)
    boxes, scores, classes = yolo_filter_boxes(
        boxes, box_confidence, box_class_probs, threshold=score_threshold)

    # Scale boxes back to original image shape.
    height = image_shape[0]
    width = image_shape[1]
    image_dims = K.stack([height, width, height, width])
    image_dims = K.reshape(image_dims, [1, 4])
    boxes = boxes * image_dims

    # TODO: Something must be done about this ugly hack!
    max_boxes_tensor = K.variable(max_boxes, dtype='int32')
    K.get_session().run(tf.variables_initializer([max_boxes_tensor]))
    nms_index = tf.image.non_max_suppression(
        boxes, scores, max_boxes_tensor, iou_threshold=iou_threshold)
    boxes = K.gather(boxes, nms_index)
    scores = K.gather(scores, nms_index)
    classes = K.gather(classes, nms_index)
    return boxes, scores, classes 
開發者ID:PiSimo,項目名稱:PiCamNN,代碼行數:29,代碼來源:keras_yolo.py

示例8: scale_boxes

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def scale_boxes(boxes, image_shape):
    """ Scales the predicted boxes in order to be drawable on the image"""
    height = image_shape[0]
    width = image_shape[1]
    image_dims = K.stack([height, width, height, width])
    image_dims = K.reshape(image_dims, [1, 4])
    boxes = boxes * image_dims
    return boxes 
開發者ID:kaka-lin,項目名稱:object-detection,代碼行數:10,代碼來源:yolo_utils.py

示例9: yolo_eval

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def yolo_eval(yolo_outputs,
              image_shape,
              max_boxes=10,
              score_threshold=.6,
              iou_threshold=.5):
    """Evaluate YOLO model on given input batch and return filtered boxes."""
    box_confidence, box_xy, box_wh, box_class_probs = yolo_outputs
    boxes = yolo_boxes_to_corners(box_xy, box_wh)
    boxes, scores, classes = yolo_filter_boxes(
        box_confidence, boxes, box_class_probs, threshold=score_threshold)
    
    # Scale boxes back to original image shape.
    height = image_shape[0]
    width = image_shape[1]
    image_dims = K.stack([height, width, height, width])
    image_dims = K.reshape(image_dims, [1, 4])
    boxes = boxes * image_dims

    # TODO: Something must be done about this ugly hack!
    max_boxes_tensor = K.variable(max_boxes, dtype='int32')
    K.get_session().run(tf.variables_initializer([max_boxes_tensor]))
    nms_index = tf.image.non_max_suppression(
        boxes, scores, max_boxes_tensor, iou_threshold=iou_threshold)
    boxes = K.gather(boxes, nms_index)
    scores = K.gather(scores, nms_index)
    classes = K.gather(classes, nms_index)
    
    return boxes, scores, classes 
開發者ID:kaka-lin,項目名稱:object-detection,代碼行數:30,代碼來源:keras_yolo.py

示例10: test_keras_unstack_hack

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def test_keras_unstack_hack():
    y_true_np = np.random.random([1, 3, 2])
    y_true_np[:, :, 0] = 0
    y_true_np[:, :, 1] = 1

    y_true_keras = K.variable(y_true_np)

    y, u = wtte._keras_unstack_hack(y_true_keras)
    y_true_keras_new = K.stack([y, u], axis=-1)

    np.testing.assert_array_equal(K.eval(y_true_keras_new), y_true_np)

# SANITY CHECK: Use pure Weibull data censored at C(ensoring point).
# Should converge to the generating A(alpha) and B(eta) for each timestep 
開發者ID:ragulpr,項目名稱:wtte-rnn,代碼行數:16,代碼來源:test_keras.py

示例11: gram_matrix

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def gram_matrix(x, norm_by_channels=False):
    '''
    Returns the Gram matrix of the tensor x.
    '''
    if K.ndim(x) == 3:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
        shape = K.shape(x)
        C, H, W = shape[0], shape[1], shape[2]
        gram = K.dot(features, K.transpose(features))
    elif K.ndim(x) == 4:
        # Swap from (H, W, C) to (B, C, H, W)
        x = K.permute_dimensions(x, (0, 3, 1, 2))
        shape = K.shape(x)
        B, C, H, W = shape[0], shape[1], shape[2], shape[3]
        # Reshape as a batch of 2D matrices with vectorized channels
        features = K.reshape(x, K.stack([B, C, H*W]))
        # This is a batch of Gram matrices (B, C, C).
        gram = K.batch_dot(features, features, axes=2)
    else:
        raise ValueError('The input tensor should be either a 3d (H, W, C) or 4d (B, H, W, C) tensor.')
    # Normalize the Gram matrix
    if norm_by_channels:
        denominator = C * H * W # Normalization from Johnson
    else:
        denominator = H * W # Normalization from Google
    gram = gram /  K.cast(denominator, x.dtype)

    return gram 
開發者ID:robertomest,項目名稱:neural-style-keras,代碼行數:30,代碼來源:training.py

示例12: _ctdet_decode

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def _ctdet_decode(hm, reg, wh, k=100, output_stride=4):
  hm = K.sigmoid(hm)
  hm = _nms(hm)
  hm_shape = K.shape(hm)
  reg_shape = K.shape(reg)
  wh_shape = K.shape(wh)
  batch, width, cat = hm_shape[0], hm_shape[2], hm_shape[3]

  hm_flat = K.reshape(hm, (batch, -1))
  reg_flat = K.reshape(reg, (reg_shape[0], -1, reg_shape[-1]))
  wh_flat = K.reshape(wh, (wh_shape[0], -1, wh_shape[-1]))

  def _process_sample(args):
    _hm, _reg, _wh = args
    _scores, _inds = tf.math.top_k(_hm, k=k, sorted=True)
    _classes = K.cast(_inds % cat, 'float32')
    _inds = K.cast(_inds / cat, 'int32')
    _xs = K.cast(_inds % width, 'float32')
    _ys = K.cast(K.cast(_inds / width, 'int32'), 'float32')
    _wh = K.gather(_wh, _inds)
    _reg = K.gather(_reg, _inds)

    _xs = _xs + _reg[..., 0]
    _ys = _ys + _reg[..., 1]

    _x1 = _xs - _wh[..., 0] / 2
    _y1 = _ys - _wh[..., 1] / 2
    _x2 = _xs + _wh[..., 0] / 2
    _y2 = _ys + _wh[..., 1] / 2

    # rescale to image coordinates
    _x1 = output_stride * _x1
    _y1 = output_stride * _y1
    _x2 = output_stride * _x2
    _y2 = output_stride * _y2

    _detection = K.stack([_x1, _y1, _x2, _y2, _scores, _classes], -1)
    return _detection

  detections = K.map_fn(_process_sample, [hm_flat, reg_flat, wh_flat], dtype=K.floatx())
  return detections 
開發者ID:see--,項目名稱:keras-centernet,代碼行數:43,代碼來源:decode.py

示例13: _make_regular_grids

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def _make_regular_grids(self, batch_size, height, width):
        # making a single regular grid
        x_linspace = K_linspace(-1., 1., width)
        y_linspace = K_linspace(-1., 1., height)
        x_coordinates, y_coordinates = K_meshgrid(x_linspace, y_linspace)
        x_coordinates = K.flatten(x_coordinates)
        y_coordinates = K.flatten(y_coordinates)
        ones = K.ones_like(x_coordinates)
        grid = K.concatenate([x_coordinates, y_coordinates, ones], 0)

        # repeating grids for each batch
        grid = K.flatten(grid)
        grids = K.tile(grid, K.stack([batch_size]))
        return K.reshape(grids, (batch_size, 3, height * width)) 
開發者ID:shamangary,項目名稱:FSA-Net,代碼行數:16,代碼來源:layers.py

示例14: _stack_permute_axis_zero

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def _stack_permute_axis_zero(xs):
    xs = Lambda(lambda xs: K.stack(xs, axis=0))(xs)

    # axes (0, 1) are permuted
    perm = [1, 0] + list(range(2, xs.shape.ndims))
    xs = Lambda(lambda xs: K.permute_dimensions(xs, perm))(xs)
    return xs 
開發者ID:t2kasa,項目名稱:social_lstm_keras_tf,代碼行數:9,代碼來源:my_social_model.py

示例15: _to_normal2d

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import stack [as 別名]
def _to_normal2d(output_batch) -> ds.MultivariateNormalTriL:
    """
    :param output_batch: (n_samples, 5)
    :return
    """

    # mean of x and y
    x_mean = Lambda(lambda o: o[:, 0])(output_batch)
    y_mean = Lambda(lambda o: o[:, 1])(output_batch)

    # std of x and y
    # std is must be 0 or positive
    x_std = Lambda(lambda o: K.exp(o[:, 2]))(output_batch)
    y_std = Lambda(lambda o: K.exp(o[:, 3]))(output_batch)

    # correlation coefficient
    # correlation coefficient range is [-1, 1]
    cor = Lambda(lambda o: K.tanh(o[:, 4]))(output_batch)

    loc = Concatenate()([
        Lambda(lambda x_mean: K.expand_dims(x_mean, 1))(x_mean),
        Lambda(lambda y_mean: K.expand_dims(y_mean, 1))(y_mean)
    ])

    x_var = Lambda(lambda x_std: K.square(x_std))(x_std)
    y_var = Lambda(lambda y_std: K.square(y_std))(y_std)
    xy_cor = Multiply()([x_std, y_std, cor])

    cov = Lambda(lambda inputs: K.stack(inputs, axis=0))(
        [x_var, xy_cor, xy_cor, y_var])
    cov = Lambda(lambda cov: K.permute_dimensions(cov, (1, 0)))(cov)
    cov = Reshape((2, 2))(cov)

    scale_tril = Lambda(lambda cov: tf.cholesky(cov))(cov)
    mvn = ds.MultivariateNormalTriL(loc, scale_tril)

    return mvn 
開發者ID:t2kasa,項目名稱:social_lstm_keras_tf,代碼行數:39,代碼來源:tf_normal_sampler.py


注:本文中的keras.backend.stack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。