當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.softmax方法代碼示例

本文整理匯總了Python中keras.backend.softmax方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.softmax方法的具體用法?Python backend.softmax怎麽用?Python backend.softmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.softmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: step

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def step(self, x, states):   
        h = states[0]
        # states[1] necessary?

        # equals K.dot(X, self._W1) + self._b2 with X.shape=[bs, T, input_dim]
        total_x_prod = states[-1]
        # comes from the constants (equals the input sequence)
        X = states[-2]
        
        # expand dims to add the vector which is only valid for this time step
        # to total_x_prod which is valid for all time steps
        hw = K.expand_dims(K.dot(h, self._W2), 1)
        additive_atn = total_x_prod + hw
        attention = K.softmax(K.dot(additive_atn, self._V), axis=1)
        x_weighted = K.sum(attention * X, [1])

        x = K.dot(K.concatenate([x, x_weighted], 1), self._W3) + self._b3
        
        h, new_states = self.layer.cell.call(x, states[:-2])
        
        return h, new_states 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:23,代碼來源:attention.py

示例2: content_addressing

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def content_addressing(memory_t,  key_vector_t, key_strength_t):
    '''
    Focusing by content.
    :param memory_t: external memory.
    :param key_vector_t: key vector.
    :param key_strength_t: the strength of key.
    :return:
    '''
    # print("content addressing:")
    # print(">>memory_t")
    # print(key_vector_t)
    # print(">>key_vector_t")
    # print(key_vector_t)
    # print(">>key_strength_t")
    # print(key_strength_t)
    _weight_content_t = \
        key_strength_t * cosine_similarity_group(key_vector_t, memory_t)
    weight_content_t = softmax(_weight_content_t)
    # print("_weight_content_t")
    # print(_weight_content_t)
    return weight_content_t 
開發者ID:SigmaQuan,項目名稱:NTM-Keras,代碼行數:23,代碼來源:memory.py

示例3: labelembed_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def labelembed_loss(out1, out2, tar, targets, tau = 2., alpha = 0.9, beta = 0.5, num_classes = 100):
    
    out2_prob = K.softmax(out2)
    tau2_prob = K.stop_gradient(K.softmax(out2 / tau))
    soft_tar = K.stop_gradient(K.softmax(tar))
    
    L_o1_y = K.sparse_categorical_crossentropy(output = K.softmax(out1), target = targets)
    
    pred = K.argmax(out2, axis = -1)
    mask = K.stop_gradient(K.cast(K.equal(pred, K.cast(targets, 'int64')), K.floatx()))
    L_o1_emb = -cross_entropy(out1, soft_tar)  # pylint: disable=invalid-unary-operand-type
    
    L_o2_y = K.sparse_categorical_crossentropy(output = out2_prob, target = targets)
    L_emb_o2 = -cross_entropy(tar, tau2_prob) * mask * (K.cast(K.shape(mask)[0], K.floatx())/(K.sum(mask)+1e-8))  # pylint: disable=invalid-unary-operand-type
    L_re = K.relu(K.sum(out2_prob * K.one_hot(K.cast(targets, 'int64'), num_classes), axis = -1) - alpha)
    
    return beta * L_o1_y + (1-beta) * L_o1_emb + L_o2_y + L_emb_o2 + L_re 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:19,代碼來源:learn_labelembedding.py

示例4: _softmax

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def _softmax(x, axis=-1, alpha=1):
    """
    building on keras implementation, allow alpha parameter

    Softmax activation function.
    # Arguments
        x : Tensor.
        axis: Integer, axis along which the softmax normalization is applied.
        alpha: a value to multiply all x
    # Returns
        Tensor, output of softmax transformation.
    # Raises
        ValueError: In case `dim(x) == 1`.
    """
    x = alpha * x
    ndim = K.ndim(x)
    if ndim == 2:
        return K.softmax(x)
    elif ndim > 2:
        e = K.exp(x - K.max(x, axis=axis, keepdims=True))
        s = K.sum(e, axis=axis, keepdims=True)
        return e / s
    else:
        raise ValueError('Cannot apply softmax to a tensor that is 1D') 
開發者ID:voxelmorph,項目名稱:voxelmorph,代碼行數:26,代碼來源:models.py

示例5: mlp_v2

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def mlp_v2():
    model = Sequential()
    model.add(Dense(2048, input_shape=(21099,)))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(BatchNormalization())
#     model.add(Dense(1024))
#     model.add(Activation('relu'))
#     model.add(Dropout(0.5))   
#     model.add(BatchNormalization())
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))   
    model.add(BatchNormalization())
    model.add(Dense(128))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))    
    model.add(BatchNormalization())
    model.add(Dense(6))
    model.add(Activation('softmax'))

    model.compile(loss='categorical_crossentropy',
                  optimizer='nadam',
                  metrics=['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:27,代碼來源:models.py

示例6: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def call(self, u_vecs):
        if self.share_weights:
            u_hat_vecs = K.conv1d(u_vecs, self.W)
        else:
            u_hat_vecs = K.local_conv1d(u_vecs, self.W, [1], [1])

        batch_size = K.shape(u_vecs)[0]
        input_num_capsule = K.shape(u_vecs)[1]
        u_hat_vecs = K.reshape(u_hat_vecs, (batch_size, input_num_capsule,
                                            self.num_capsule, self.dim_capsule))
        u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1, 3))

        b = K.zeros_like(u_hat_vecs[:, :, :, 0])  # shape = [None, num_capsule, input_num_capsule]
        for i in range(self.routings):
            b = K.permute_dimensions(b, (0, 2, 1))  # shape = [None, input_num_capsule, num_capsule]
            c = K.softmax(b)
            c = K.permute_dimensions(c, (0, 2, 1))
            b = K.permute_dimensions(b, (0, 2, 1))
            outputs = self.activation(K.batch_dot(c, u_hat_vecs, [2, 2]))
            if i < self.routings - 1:
                b = K.batch_dot(outputs, u_hat_vecs, [2, 3])

        return outputs 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:25,代碼來源:models.py

示例7: CapsuleNet

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def CapsuleNet(n_capsule = 10, n_routings = 5, capsule_dim = 16,
     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):
    K.clear_session()

    inputs = Input(shape=(170,))
    x = Embedding(21099, 300,  trainable=True)(inputs)        
    x = SpatialDropout1D(dropout_rate)(x)
    x = Bidirectional(
        CuDNNGRU(n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x)
    x = PReLU()(x)
    x = Capsule(
        num_capsule=n_capsule, dim_capsule=capsule_dim,
        routings=n_routings, share_weights=True)(x)
    x = Flatten(name = 'concatenate')(x)
    x = Dropout(dropout_rate)(x)
#     fc = Dense(128, activation='sigmoid')(x)
    outputs = Dense(6, activation='softmax')(x)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:24,代碼來源:models.py

示例8: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def call(self, u_vecs):
        if self.share_weights:
            u_hat_vecs = K.conv1d(u_vecs, self.W)
        else:
            u_hat_vecs = K.local_conv1d(u_vecs, self.W, [1], [1])

        batch_size = K.shape(u_vecs)[0]
        input_num_capsule = K.shape(u_vecs)[1]
        u_hat_vecs = K.reshape(u_hat_vecs, (batch_size, input_num_capsule,
                                            self.num_capsule, self.dim_capsule))
        u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1, 3))
        # final u_hat_vecs.shape = [None, num_capsule, input_num_capsule, dim_capsule]

        b = K.zeros_like(u_hat_vecs[:, :, :, 0])  # shape = [None, num_capsule, input_num_capsule]
        outputs = None
        for i in range(self.routings):
            b = K.permute_dimensions(b, (0, 2, 1))  # shape = [None, input_num_capsule, num_capsule]
            c = K.softmax(b)
            c = K.permute_dimensions(c, (0, 2, 1))
            b = K.permute_dimensions(b, (0, 2, 1))
            outputs = self.activation(K.batch_dot(c, u_hat_vecs, [2, 2]))
            if i < self.routings - 1:
                b = K.batch_dot(outputs, u_hat_vecs, [2, 3])

        return outputs 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:27,代碼來源:capsule.py

示例9: mask_attention_if_needed

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def mask_attention_if_needed(self, dot_product):
        """
        Makes sure that (when enabled) each position
        (of a decoder's self-attention) cannot attend to subsequent positions.
        This is achieved by assigning -inf (or some large negative number)
        to all invalid connections. Later softmax will turn them into zeros.
        We need this to guarantee that decoder's predictions are based
        on what has happened before the position, not after.
        The method does nothing if masking is turned off.
        :param dot_product: scaled dot-product of Q and K after reshaping them
        to 3D tensors (batch * num_heads, rows, cols)
        """
        if not self.use_masking:
            return dot_product
        last_dims = K.int_shape(dot_product)[-2:]
        low_triangle_ones = (
            np.tril(np.ones(last_dims))
            # to ensure proper broadcasting
            .reshape((1,) + last_dims))
        inverse_low_triangle = 1 - low_triangle_ones
        close_to_negative_inf = -1e9
        result = (
            K.constant(low_triangle_ones, dtype=K.floatx()) * dot_product +
            K.constant(close_to_negative_inf * inverse_low_triangle))
        return result 
開發者ID:kpot,項目名稱:keras-transformer,代碼行數:27,代碼來源:attention.py

示例10: softmax

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def softmax(x, axis=1):
    """Softmax activation function.
    # Arguments
        x : Tensor.
        axis: Integer, axis along which the softmax normalization is applied.
    # Returns
        Tensor, output of softmax transformation.
    # Raises
        ValueError: In case `dim(x) == 1`.
    """
    ndim = K.ndim(x)
    if ndim == 2:
        return K.softmax(x)
    elif ndim > 2:
        e = K.exp(x - K.max(x, axis=axis, keepdims=True))
        s = K.sum(e, axis=axis, keepdims=True)
        return e / s
    else:
        raise ValueError('Cannot apply softmax to a tensor that is 1D') 
開發者ID:kaka-lin,項目名稱:stock-price-predict,代碼行數:21,代碼來源:seq2seq_attention_2.py

示例11: _get_weight_vector

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def _get_weight_vector(self, M, w_tm1, k, beta, g, s, gamma):
#        M = tf.Print(M, [M, w_tm1, k], message='get weights beg1: ')
#        M = tf.Print(M, [beta, g, s, gamma], message='get weights beg2: ')
        # Content adressing, see Chapter 3.3.1:
        num = beta * _cosine_distance(M, k)
        w_c  = K.softmax(num) # It turns out that equation (5) is just softmax.
        # Location adressing, see Chapter 3.3.2:
        # Equation 7:
        w_g = (g * w_c) + (1-g)*w_tm1
        # C_s is the circular convolution
        #C_w = K.sum((self.C[None, :, :, :] * w_g[:, None, None, :]),axis=3)
        # Equation 8:
        # TODO: Explain
        C_s = K.sum(K.repeat_elements(self.C[None, :, :, :], self.batch_size, axis=0) * s[:,:,None,None], axis=1)
        w_tilda = K.batch_dot(C_s, w_g)
        # Equation 9:
        w_out = _renorm(w_tilda ** gamma)

        return w_out 
開發者ID:flomlo,項目名稱:ntm_keras,代碼行數:21,代碼來源:ntm.py

示例12: softmax_activation

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def softmax_activation(self, mem):
        """Softmax activation."""

        # spiking_samples = k.less_equal(k.random_uniform([self.config.getint(
        #     'simulation', 'batch_size'), 1]), 300 * self.dt / 1000.)
        # spiking_neurons = k.T.repeat(spiking_samples, 10, axis=1)
        # activ = k.T.nnet.softmax(mem)
        # max_activ = k.max(activ, axis=1, keepdims=True)
        # output_spikes = k.equal(activ, max_activ).astype(k.floatx())
        # output_spikes = k.T.set_subtensor(output_spikes[k.equal(
        #     spiking_neurons, 0).nonzero()], 0.)
        # new_and_reset_mem = k.T.set_subtensor(mem[spiking_neurons.nonzero()],
        #                                       0.)
        # self.add_update([(self.mem, new_and_reset_mem)])
        # return output_spikes

        return k.T.mul(k.less_equal(k.random_uniform(mem.shape),
                                    k.softmax(mem)), self.v_thresh) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:20,代碼來源:temporal_mean_rate_theano.py

示例13: set_reset_mem

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def set_reset_mem(self, mem, spikes):
        """
        Reset membrane potential ``mem`` array where ``spikes`` array is
        nonzero.
        """

        spike_idxs = k.T.nonzero(spikes)
        if (hasattr(self, 'activation_str') and
                self.activation_str == 'softmax'):
            new = mem.copy()  # k.T.set_subtensor(mem[spike_idxs], 0.)
        elif self.config.get('cell', 'reset') == 'Reset by subtraction':
            if self.payloads:  # Experimental.
                new = k.T.set_subtensor(mem[spike_idxs], 0.)
            else:
                pos_spike_idxs = k.T.nonzero(k.greater(spikes, 0))
                neg_spike_idxs = k.T.nonzero(k.less(spikes, 0))
                new = k.T.inc_subtensor(mem[pos_spike_idxs], -self.v_thresh)
                new = k.T.inc_subtensor(new[neg_spike_idxs], self.v_thresh)
        elif self.config.get('cell', 'reset') == 'Reset by modulo':
            new = k.T.set_subtensor(mem[spike_idxs],
                                    mem[spike_idxs] % self.v_thresh)
        else:  # self.config.get('cell', 'reset') == 'Reset to zero':
            new = k.T.set_subtensor(mem[spike_idxs], 0.)
        self.add_update([(self.mem, new)]) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:26,代碼來源:temporal_mean_rate_theano.py

示例14: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def call(self, u_vecs):
        if self.share_weights:
            u_hat_vecs = K.conv1d(u_vecs, self.W)
        else:
            u_hat_vecs = K.local_conv1d(u_vecs, self.W, [1], [1])

        batch_size = K.shape(u_vecs)[0]
        input_num_capsule = K.shape(u_vecs)[1]
        u_hat_vecs = K.reshape(u_hat_vecs, (batch_size, input_num_capsule,
                                            self.num_capsule, self.dim_capsule))    # noqa
        u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1, 3))
        # final u_hat_vecs.shape = [None, num_capsule, input_num_capsule, dim_capsule]  # noqa

        b = K.zeros_like(u_hat_vecs[:, :, :, 0])  # shape = [None, num_capsule, input_num_capsule]  # noqa
        for i in range(self.routings):
            b = K.permute_dimensions(b, (0, 2, 1))  # shape = [None, input_num_capsule, num_capsule]    # noqa
            c = K.softmax(b)
            c = K.permute_dimensions(c, (0, 2, 1))
            b = K.permute_dimensions(b, (0, 2, 1))
            outputs = self.activation(tf.keras.backend.batch_dot(c, u_hat_vecs, [2, 2]))    # noqa
            if i < self.routings - 1:
                b = tf.keras.backend.batch_dot(outputs, u_hat_vecs, [2, 3])
        return outputs 
開發者ID:KevinLiao159,項目名稱:Quora,代碼行數:25,代碼來源:neural_networks.py

示例15: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import softmax [as 別名]
def call(self, x, mask=None):
        uit = K.tanh(K.dot(x, self.Ws1))
        ait = K.dot(uit, self.Ws2)
        ait = K.permute_dimensions(ait, (0, 2, 1))
        A = K.softmax(ait, axis=1)
        M = K.batch_dot(A, x)
        if self.punish:
            A_T = K.permute_dimensions(A, (0, 2, 1))
            tile_eye = K.tile(K.eye(self.weight_ws2), [self.batch_size, 1])
            tile_eye = K.reshape(
                tile_eye, shape=[-1, self.weight_ws2, self.weight_ws2])
            AA_T = K.batch_dot(A, A_T) - tile_eye
            P = K.l2_normalize(AA_T, axis=(1, 2))
            return M, P
        else:
            return M 
開發者ID:stevewyl,項目名稱:nlp_toolkit,代碼行數:18,代碼來源:multi_dim_attention.py


注:本文中的keras.backend.softmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。