本文整理匯總了Python中keras.backend.slice方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.slice方法的具體用法?Python backend.slice怎麽用?Python backend.slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.slice方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import slice [as 別名]
def call(self, inputs, **kwargs):
if not (isinstance(inputs, list) and len(inputs) == 2):
raise ValueError(
'You can call this layer only with a list of two tensors '
'(for keys/values and queries)')
key_values_input, query_input = inputs
_, value_seq_len, d_model = K.int_shape(key_values_input)
query_seq_len = K.int_shape(inputs[1])[-2]
# The first thing we need to do is to perform affine transformations
# of the inputs to get the Queries, the Keys and the Values.
kv = K.dot(K.reshape(key_values_input, [-1, d_model]), self.kv_weights)
# splitting the keys, the values and the queries before further
# processing
pre_k, pre_v = [
K.reshape(
# K.slice(kv, (0, i * d_model), (-1, d_model)),
kv[:, i * d_model: (i + 1) * d_model],
(-1, value_seq_len,
self.num_heads, d_model // self.num_heads))
for i in range(2)]
pre_q = K.reshape(
K.dot(K.reshape(query_input, [-1, d_model]), self.q_weights),
(-1, query_seq_len, self.num_heads, d_model // self.num_heads))
return self.attention(pre_q, pre_v, pre_k, query_seq_len, d_model,
training=kwargs.get('training'))
示例2: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import slice [as 別名]
def call(self, inputs, mask=None):
if self.use_token_type:
assert len(inputs) == 2, "`token_type_ids` must be specified if `use_token_type` is True."
output = inputs[0]
_, seq_length, input_width = K.int_shape(output)
# print(inputs)
assert seq_length == K.int_shape(inputs[1])[1], "width of `token_type_ids` must be equal to `seq_length`"
token_type_ids = inputs[1]
# assert K.int_shape(token_type_ids)[1] <= self.token_type_vocab_size
flat_token_type_ids = K.reshape(token_type_ids, [-1])
flat_token_type_ids = K.cast(flat_token_type_ids, dtype='int32')
token_type_one_hot_ids = K.one_hot(flat_token_type_ids, num_classes=self.token_type_vocab_size)
token_type_embeddings = K.dot(token_type_one_hot_ids, self.token_type_table)
token_type_embeddings = K.reshape(token_type_embeddings, shape=[-1, seq_length, input_width])
# print(token_type_embeddings)
output += token_type_embeddings
else:
output = inputs
seq_length = K.int_shape(inputs)[1]
if self.use_position_embeddings:
position_embeddings = K.slice(self.full_position_embeddings, [0, 0], [seq_length, -1])
output += position_embeddings
return output
示例3: step
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import slice [as 別名]
def step(self, input_energy_t, states, return_logZ=True):
# not in the following `prev_target_val` has shape = (B, F)
# where B = batch_size, F = output feature dim
# Note: `i` is of float32, due to the behavior of `K.rnn`
prev_target_val, i, chain_energy = states[:3]
t = K.cast(i[0, 0], dtype='int32')
if len(states) > 3:
if K.backend() == 'theano':
m = states[3][:, t:(t + 2)]
else:
m = K.slice(states[3], [0, t], [-1, 2])
input_energy_t = input_energy_t * K.expand_dims(m[:, 0])
# (1, F, F)*(B, 1, 1) -> (B, F, F)
chain_energy = chain_energy * K.expand_dims(
K.expand_dims(m[:, 0] * m[:, 1]))
if return_logZ:
# shapes: (1, B, F) + (B, F, 1) -> (B, F, F)
energy = chain_energy + K.expand_dims(input_energy_t - prev_target_val, 2)
new_target_val = K.logsumexp(-energy, 1) # shapes: (B, F)
return new_target_val, [new_target_val, i + 1]
else:
energy = chain_energy + K.expand_dims(input_energy_t + prev_target_val, 2)
min_energy = K.min(energy, 1)
# cast for tf-version `K.rnn
argmin_table = K.cast(K.argmin(energy, 1), K.floatx())
return argmin_table, [min_energy, i + 1]
示例4: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import slice [as 別名]
def call(self, inputs, **kwargs):
one_hot_feature_index = K.cast(K.slice(inputs, (0, 0), (-1, self.feature_num)), "int32")
numeric_feature = K.slice(inputs, (0, self.feature_num), (-1, -1))
## first order
first_order_index = K.reshape(one_hot_feature_index, (-1,))
get_first_order_weights = K.gather(self.w_one_hot, first_order_index)
first_order_weights = K.reshape(get_first_order_weights, (-1, self.feature_num))
first_order = K.sum(first_order_weights, 1) + K.sum(K.dot(numeric_feature, self.w_numeric), 1)
## second order
get_second_order_weights = K.gather(self.v_one_hot, first_order_index)
second_order_weights = K.reshape(get_second_order_weights, (-1, self.feature_num, self.embedding_size))
numeric_weights = K.expand_dims(self.v_numeric, 0) * K.expand_dims(numeric_feature, -1)
all_weights = K.concatenate([second_order_weights, numeric_weights], axis=1)
weights_sum_square = K.sum(K.square(all_weights), 1)
weights_square_sum = K.square(K.sum(all_weights, 1))
second_order = 0.5*K.sum(weights_square_sum - weights_sum_square, 1)
output = first_order + second_order + self.b
if self.activation is not None:
output = self.activation(output)
output = K.expand_dims(output, -1)
return output
'''X_square = K.square(inputs)
xv = K.square(K.dot(inputs, self.v))
xw = K.dot(inputs, self.w)
p = 0.5 * K.sum(xv - K.dot(X_square, K.square(self.v)), 1)
rp = K.repeat_elements(K.reshape(p, (-1, 1)), self.output_dim, axis=-1)
f = xw + rp + self.b
output = K.reshape(f, (-1, self.output_dim))
if self.activation is not None:
output = self.activation(output)
return output'''
示例5: make_online
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import slice [as 別名]
def make_online(self):
embedding = K.variable(np.random.uniform(0, 1, (self.dataset.nsize, self.flowargs['embdim'])))
prevemb = K.placeholder(ndim=2, dtype='float32') # (nsize, d)
data = K.placeholder(ndim=2, dtype='int32') # (batchsize, 5), [k, from_pos, to_pos, from_neg, to_neg]
weight = K.placeholder(ndim=1, dtype='float32') # (batchsize, )
if K._BACKEND == 'theano':
# (batchsize, d) => (batchsize, )
# data[:, 0] should be always 0, so we simply ignore it
# note, when you want to use it, that according to data generation procedure, the actual data[:, 0] is not 0
dist_pos = embedding[data[:, 1]] - embedding[data[:, 2]]
dist_pos = K.sum(dist_pos * dist_pos, axis=-1)
dist_neg = embedding[data[:, 3]] - embedding[data[:, 4]]
dist_neg = K.sum(dist_neg * dist_neg, axis=-1)
else:
dist_pos = K.gather(embedding, K.squeeze(K.slice(data, [0, 1], [-1, 1]), axis=1)) - \
K.gather(embedding, K.squeeze(K.slice(data, [0, 2], [-1, 1]), axis=1))
dist_pos = K.sum(dist_pos * dist_pos, axis=-1)
dist_neg = K.gather(embedding, K.squeeze(K.slice(data, [0, 3], [-1, 1]), axis=1)) - \
K.gather(embedding, K.squeeze(K.slice(data, [0, 4], [-1, 1]), axis=1))
dist_neg = K.sum(dist_neg * dist_neg, axis=-1)
# (batchsize, )
margin = 1
lprox = K.maximum(margin + dist_pos - dist_neg, 0) * weight
# (1, )
lprox = K.mean(lprox)
# lsmooth
lsmooth = embedding - prevemb # (nsize, d)
lsmooth = K.sum(K.square(lsmooth), axis=-1) # (nsize)
lsmooth = K.mean(lsmooth)
loss = lprox + self.flowargs['beta'][0] * lsmooth
opt = optimizers.get({'class_name': 'Adagrad', 'config': {'lr': self.lr}})
cstr = {embedding: constraints.get({'class_name': 'maxnorm', 'config': {'max_value': 1, 'axis': 1}})}
upd = opt.get_updates([embedding], cstr, loss)
lf = K.function([data, weight, prevemb], [loss], updates=upd)
return lf, None, [embedding], {}