當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.sign方法代碼示例

本文整理匯總了Python中keras.backend.sign方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.sign方法的具體用法?Python backend.sign怎麽用?Python backend.sign使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.sign方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: symbolic_fgs

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def symbolic_fgs(x, grad, eps=0.3, clipping=True):
    """
    FGSM attack.
    """

    # signed gradient
    normed_grad = K.sign(grad)

    # Multiply by constant epsilon
    scaled_grad = eps * normed_grad

    # Add perturbation to original example to obtain adversarial example
    adv_x = K.stop_gradient(x + scaled_grad)

    if clipping:
        adv_x = K.clip(adv_x, 0, 1)
    return adv_x 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:19,代碼來源:fgs.py

示例2: overall_grad_est

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def overall_grad_est(j, logits, prediction, x, curr_sample, curr_target, 
                        p_t, random_indices, num_groups, U=None):
    basis_vec = np.zeros((BATCH_SIZE, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))

    if PCA_FLAG == False:
        if j != num_groups-1:
            curr_indices = random_indices[j*args.group_size:(j+1)*args.group_size]
        elif j == num_groups-1:
            curr_indices = random_indices[j*args.group_size:]
        row = curr_indices/FLAGS.IMAGE_COLS
        col = curr_indices % FLAGS.IMAGE_COLS
        for i in range(len(curr_indices)):
            basis_vec[:, row[i], col[i]] = 1.

    elif PCA_FLAG == True:
        basis_vec[:] = U[:,j].reshape((1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
        # basis_vec = np.sign(basis_vec)

    x_plus_i = np.clip(curr_sample + args.delta * basis_vec, CLIP_MIN, CLIP_MAX)
    x_minus_i = np.clip(curr_sample - args.delta * basis_vec, CLIP_MIN, CLIP_MAX)

    if args.loss_type == 'cw':
        logit_t_grad_est, logit_max_grad_est = CW_est(logits, x, x_plus_i,
                                        x_minus_i, curr_sample, curr_target)
        if '_un' in args.method:
            single_grad_est = logit_t_grad_est - logit_max_grad_est
        else:
            single_grad_est = logit_max_grad_est - logit_t_grad_est
    elif args.loss_type == 'xent':
        single_grad_est = xent_est(prediction, x, x_plus_i, x_minus_i, curr_target)

    return single_grad_est 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:34,代碼來源:query_based_attack.py

示例3: get_updates

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
                                                      K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vhats = [K.zeros(1) for _ in params]
        self.weights = [self.iterations] + ms + vs + vhats

        for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
            g2 = K.square(g)
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = v - (1. - self.beta_2) * K.sign(v - g2) * g2
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:36,代碼來源:yogi.py

示例4: sparse_autoencoder_error

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def sparse_autoencoder_error(self, y_true, y_pred):
        return K.mean(K.square(K.sign(y_true)*(y_true-y_pred)), axis=-1) 
開發者ID:BUPTDM,項目名稱:OpenHINE,代碼行數:4,代碼來源:DHNE.py

示例5: random_laplace

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def random_laplace(shape, mu=0., b=1.):
    '''
    Draw random samples from a Laplace distriubtion.

    See: https://en.wikipedia.org/wiki/Laplace_distribution#Generating_random_variables_according_to_the_Laplace_distribution
    '''
    U = K.random_uniform(shape, -0.5, 0.5)
    return mu - b * K.sign(U) * K.log(1 - 2 * K.abs(U)) 
開發者ID:jhartford,項目名稱:DeepIV,代碼行數:10,代碼來源:samplers.py

示例6: white_box_fgsm

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def white_box_fgsm(prediction, target_model, x, logits, y, X_test, X_test_ini, targets, targets_cat, eps, dim):
    time1 = time.time()
    #Get gradient from model
    if args.loss_type == 'xent':
        grad = gen_grad(x, logits, y)
    elif args.loss_type == 'cw':
        real = tf.reduce_sum(y*logits, 1)
        other = tf.reduce_max((1-y)*logits - (y*10000), 1)
        if '_un' in args.method:
            loss = tf.maximum(0.0,real-other+args.conf)
        else:
            loss = tf.maximum(0.0,other-real+args.conf)
        grad = K.gradients(loss, [x])[0]

    # normalized gradient
    if args.norm == 'linf':
        normed_grad = K.sign(grad)
    elif args.norm == 'l2':
        normed_grad = K.l2_normalize(grad, axis = (1,2,3))

    # Multiply by constant epsilon
    scaled_grad = (eps - args.alpha) * normed_grad

    # Add perturbation to original example to obtain adversarial example
    if args.loss_type == 'xent':
        if '_un' in args.method:
            adv_x_t = K.stop_gradient(x + scaled_grad)
        else:
            adv_x_t = K.stop_gradient(x - scaled_grad)
    elif args.loss_type == 'cw':
        adv_x_t = K.stop_gradient(x - scaled_grad)

    adv_x_t = K.clip(adv_x_t, CLIP_MIN, CLIP_MAX)

    X_test_ini_slice = X_test_ini[:BATCH_SIZE*BATCH_EVAL_NUM]
    targets_cat_mod = targets_cat[:BATCH_SIZE*BATCH_EVAL_NUM]
    targets_mod = targets[:BATCH_SIZE*BATCH_EVAL_NUM]

    X_adv_t = np.zeros_like(X_test_ini_slice)

    for i in range(BATCH_EVAL_NUM):
        X_test_slice = X_test[i*(BATCH_SIZE):(i+1)*(BATCH_SIZE)]
        targets_cat_slice = targets_cat[i*(BATCH_SIZE):(i+1)*(BATCH_SIZE)]
        X_adv_t[i*(BATCH_SIZE):(i+1)*(BATCH_SIZE)] = K.get_session().run([adv_x_t], feed_dict={x: X_test_slice, y: targets_cat_slice})[0]

    adv_pred_np = K.get_session().run([prediction], feed_dict={x: X_adv_t})[0]

    # _, _, white_box_error = tf_test_error_rate(target_model, x, X_adv_t, targets_cat_mod)
    white_box_error = 100.0 * np.sum(np.argmax(adv_pred_np,1) != targets_mod) / adv_pred_np.shape[0]

    if '_un' not in args.method:
        white_box_error = 100.0 - white_box_error

    wb_norm = np.mean(np.linalg.norm((X_adv_t-X_test_ini_slice).reshape(BATCH_SIZE*BATCH_EVAL_NUM, dim), axis=1))
    print('Average white-box l2 perturbation: {}'.format(wb_norm))
    time2= time.time()
    print('Total time: {}, Average time: {}'.format(time2-time1, (time2 - time1)/(BATCH_SIZE*BATCH_EVAL_NUM)))

    wb_write_out(eps, white_box_error, wb_norm)

    return 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:63,代碼來源:query_based_attack.py

示例7: build

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def build(self, input_shape):
        input_dim = input_shape[-1]

        if self.recurrent_clip_min == -1 or self.recurrent_clip_max == -1:
            self.recurrent_clip_min = 0.0

            if hasattr(self, 'timesteps') and self.timesteps is not None:
                self.recurrent_clip_max = pow(2.0, 1. / self.timesteps)
            else:
                warnings.warn("IndRNNCell: Number of timesteps could not be determined. \n"
                              "Defaulting to max clipping range of 1.0. \n"
                              "If this model was trained using a specific timestep during training, "
                              "inference may be wrong due to this default setting.\n"
                              "Please ensure that you use the same number of timesteps during training "
                              "and evaluation")
                self.recurrent_clip_max = 1.0

        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                      name='input_kernel',
                                      initializer=self.kernel_initializer,
                                      regularizer=self.kernel_regularizer,
                                      constraint=self.kernel_constraint)

        if self.recurrent_initializer is None:
            if self.recurrent_clip_min is not None and self.recurrent_clip_max is not None:
                initialization_value = min(self.recurrent_clip_max, 1.0)
                self.recurrent_initializer = initializers.uniform(-initialization_value,
                                                                  initialization_value)
            else:
                self.recurrent_initializer = initializers.uniform(-1.0, 1.0)

        self.recurrent_kernel = self.add_weight(shape=(self.units,),
                                                name='recurrent_kernel',
                                                initializer=self.recurrent_initializer,
                                                regularizer=self.recurrent_regularizer,
                                                constraint=self.recurrent_constraint)

        if self.recurrent_clip_min is not None and self.recurrent_clip_max is not None:
            if abs(self.recurrent_clip_min):
                abs_recurrent_kernel = K.abs(self.recurrent_kernel)
                min_recurrent_kernel = K.maximum(abs_recurrent_kernel, abs(self.recurrent_clip_min))
                self.recurrent_kernel = K.sign(self.recurrent_kernel) * min_recurrent_kernel

            self.recurrent_kernel = K.clip(self.recurrent_kernel,
                                           self.recurrent_clip_min,
                                           self.recurrent_clip_max)

        if self.use_bias:
            bias_initializer = self.bias_initializer

            self.bias = self.add_weight(shape=(self.units,),
                                        name='bias',
                                        initializer=bias_initializer,
                                        regularizer=self.bias_regularizer,
                                        constraint=self.bias_constraint)
        else:
            self.bias = None

        self.built = True 
開發者ID:titu1994,項目名稱:Keras-IndRNN,代碼行數:61,代碼來源:ind_rnn.py


注:本文中的keras.backend.sign方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。