本文整理匯總了Python中keras.backend.sign方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.sign方法的具體用法?Python backend.sign怎麽用?Python backend.sign使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.sign方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: symbolic_fgs
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def symbolic_fgs(x, grad, eps=0.3, clipping=True):
"""
FGSM attack.
"""
# signed gradient
normed_grad = K.sign(grad)
# Multiply by constant epsilon
scaled_grad = eps * normed_grad
# Add perturbation to original example to obtain adversarial example
adv_x = K.stop_gradient(x + scaled_grad)
if clipping:
adv_x = K.clip(adv_x, 0, 1)
return adv_x
示例2: overall_grad_est
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def overall_grad_est(j, logits, prediction, x, curr_sample, curr_target,
p_t, random_indices, num_groups, U=None):
basis_vec = np.zeros((BATCH_SIZE, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
if PCA_FLAG == False:
if j != num_groups-1:
curr_indices = random_indices[j*args.group_size:(j+1)*args.group_size]
elif j == num_groups-1:
curr_indices = random_indices[j*args.group_size:]
row = curr_indices/FLAGS.IMAGE_COLS
col = curr_indices % FLAGS.IMAGE_COLS
for i in range(len(curr_indices)):
basis_vec[:, row[i], col[i]] = 1.
elif PCA_FLAG == True:
basis_vec[:] = U[:,j].reshape((1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
# basis_vec = np.sign(basis_vec)
x_plus_i = np.clip(curr_sample + args.delta * basis_vec, CLIP_MIN, CLIP_MAX)
x_minus_i = np.clip(curr_sample - args.delta * basis_vec, CLIP_MIN, CLIP_MAX)
if args.loss_type == 'cw':
logit_t_grad_est, logit_max_grad_est = CW_est(logits, x, x_plus_i,
x_minus_i, curr_sample, curr_target)
if '_un' in args.method:
single_grad_est = logit_t_grad_est - logit_max_grad_est
else:
single_grad_est = logit_max_grad_est - logit_t_grad_est
elif args.loss_type == 'xent':
single_grad_est = xent_est(prediction, x, x_plus_i, x_minus_i, curr_target)
return single_grad_est
示例3: get_updates
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t)))
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vhats = [K.zeros(1) for _ in params]
self.weights = [self.iterations] + ms + vs + vhats
for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
g2 = K.square(g)
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = v - (1. - self.beta_2) * K.sign(v - g2) * g2
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
new_p = p_t
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
示例4: sparse_autoencoder_error
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def sparse_autoencoder_error(self, y_true, y_pred):
return K.mean(K.square(K.sign(y_true)*(y_true-y_pred)), axis=-1)
示例5: random_laplace
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def random_laplace(shape, mu=0., b=1.):
'''
Draw random samples from a Laplace distriubtion.
See: https://en.wikipedia.org/wiki/Laplace_distribution#Generating_random_variables_according_to_the_Laplace_distribution
'''
U = K.random_uniform(shape, -0.5, 0.5)
return mu - b * K.sign(U) * K.log(1 - 2 * K.abs(U))
示例6: white_box_fgsm
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def white_box_fgsm(prediction, target_model, x, logits, y, X_test, X_test_ini, targets, targets_cat, eps, dim):
time1 = time.time()
#Get gradient from model
if args.loss_type == 'xent':
grad = gen_grad(x, logits, y)
elif args.loss_type == 'cw':
real = tf.reduce_sum(y*logits, 1)
other = tf.reduce_max((1-y)*logits - (y*10000), 1)
if '_un' in args.method:
loss = tf.maximum(0.0,real-other+args.conf)
else:
loss = tf.maximum(0.0,other-real+args.conf)
grad = K.gradients(loss, [x])[0]
# normalized gradient
if args.norm == 'linf':
normed_grad = K.sign(grad)
elif args.norm == 'l2':
normed_grad = K.l2_normalize(grad, axis = (1,2,3))
# Multiply by constant epsilon
scaled_grad = (eps - args.alpha) * normed_grad
# Add perturbation to original example to obtain adversarial example
if args.loss_type == 'xent':
if '_un' in args.method:
adv_x_t = K.stop_gradient(x + scaled_grad)
else:
adv_x_t = K.stop_gradient(x - scaled_grad)
elif args.loss_type == 'cw':
adv_x_t = K.stop_gradient(x - scaled_grad)
adv_x_t = K.clip(adv_x_t, CLIP_MIN, CLIP_MAX)
X_test_ini_slice = X_test_ini[:BATCH_SIZE*BATCH_EVAL_NUM]
targets_cat_mod = targets_cat[:BATCH_SIZE*BATCH_EVAL_NUM]
targets_mod = targets[:BATCH_SIZE*BATCH_EVAL_NUM]
X_adv_t = np.zeros_like(X_test_ini_slice)
for i in range(BATCH_EVAL_NUM):
X_test_slice = X_test[i*(BATCH_SIZE):(i+1)*(BATCH_SIZE)]
targets_cat_slice = targets_cat[i*(BATCH_SIZE):(i+1)*(BATCH_SIZE)]
X_adv_t[i*(BATCH_SIZE):(i+1)*(BATCH_SIZE)] = K.get_session().run([adv_x_t], feed_dict={x: X_test_slice, y: targets_cat_slice})[0]
adv_pred_np = K.get_session().run([prediction], feed_dict={x: X_adv_t})[0]
# _, _, white_box_error = tf_test_error_rate(target_model, x, X_adv_t, targets_cat_mod)
white_box_error = 100.0 * np.sum(np.argmax(adv_pred_np,1) != targets_mod) / adv_pred_np.shape[0]
if '_un' not in args.method:
white_box_error = 100.0 - white_box_error
wb_norm = np.mean(np.linalg.norm((X_adv_t-X_test_ini_slice).reshape(BATCH_SIZE*BATCH_EVAL_NUM, dim), axis=1))
print('Average white-box l2 perturbation: {}'.format(wb_norm))
time2= time.time()
print('Total time: {}, Average time: {}'.format(time2-time1, (time2 - time1)/(BATCH_SIZE*BATCH_EVAL_NUM)))
wb_write_out(eps, white_box_error, wb_norm)
return
示例7: build
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import sign [as 別名]
def build(self, input_shape):
input_dim = input_shape[-1]
if self.recurrent_clip_min == -1 or self.recurrent_clip_max == -1:
self.recurrent_clip_min = 0.0
if hasattr(self, 'timesteps') and self.timesteps is not None:
self.recurrent_clip_max = pow(2.0, 1. / self.timesteps)
else:
warnings.warn("IndRNNCell: Number of timesteps could not be determined. \n"
"Defaulting to max clipping range of 1.0. \n"
"If this model was trained using a specific timestep during training, "
"inference may be wrong due to this default setting.\n"
"Please ensure that you use the same number of timesteps during training "
"and evaluation")
self.recurrent_clip_max = 1.0
self.kernel = self.add_weight(shape=(input_dim, self.units),
name='input_kernel',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.recurrent_initializer is None:
if self.recurrent_clip_min is not None and self.recurrent_clip_max is not None:
initialization_value = min(self.recurrent_clip_max, 1.0)
self.recurrent_initializer = initializers.uniform(-initialization_value,
initialization_value)
else:
self.recurrent_initializer = initializers.uniform(-1.0, 1.0)
self.recurrent_kernel = self.add_weight(shape=(self.units,),
name='recurrent_kernel',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
if self.recurrent_clip_min is not None and self.recurrent_clip_max is not None:
if abs(self.recurrent_clip_min):
abs_recurrent_kernel = K.abs(self.recurrent_kernel)
min_recurrent_kernel = K.maximum(abs_recurrent_kernel, abs(self.recurrent_clip_min))
self.recurrent_kernel = K.sign(self.recurrent_kernel) * min_recurrent_kernel
self.recurrent_kernel = K.clip(self.recurrent_kernel,
self.recurrent_clip_min,
self.recurrent_clip_max)
if self.use_bias:
bias_initializer = self.bias_initializer
self.bias = self.add_weight(shape=(self.units,),
name='bias',
initializer=bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.built = True