本文整理匯總了Python中keras.backend.set_image_dim_ordering方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.set_image_dim_ordering方法的具體用法?Python backend.set_image_dim_ordering怎麽用?Python backend.set_image_dim_ordering使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.set_image_dim_ordering方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def main():
K.set_image_dim_ordering('tf')
sys.path.append(patch_path('..'))
from keras_video_classifier.library.recurrent_networks import VGG16BidirectionalLSTMVideoClassifier
from keras_video_classifier.library.utility.plot_utils import plot_and_save_history
from keras_video_classifier.library.utility.ucf.UCF101_loader import load_ucf
data_set_name = 'UCF-101'
input_dir_path = patch_path('very_large_data')
output_dir_path = patch_path('models/' + data_set_name)
report_dir_path = patch_path('reports/' + data_set_name)
np.random.seed(42)
# this line downloads the video files of UCF-101 dataset if they are not available in the very_large_data folder
load_ucf(input_dir_path)
classifier = VGG16BidirectionalLSTMVideoClassifier()
history = classifier.fit(data_dir_path=input_dir_path, model_dir_path=output_dir_path, data_set_name=data_set_name)
plot_and_save_history(history, VGG16BidirectionalLSTMVideoClassifier.model_name,
report_dir_path + '/' + VGG16BidirectionalLSTMVideoClassifier.model_name + '-history.png')
示例2: main
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def main():
K.set_image_dim_ordering('tf')
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from keras_video_classifier.library.utility.plot_utils import plot_and_save_history
from keras_video_classifier.library.recurrent_networks import VGG16LSTMVideoClassifier
from keras_video_classifier.library.utility.ucf.UCF101_loader import load_ucf
data_set_name = 'UCF-101'
input_dir_path = os.path.join(os.path.dirname(__file__), 'very_large_data')
output_dir_path = os.path.join(os.path.dirname(__file__), 'models', data_set_name)
report_dir_path = os.path.join(os.path.dirname(__file__), 'reports', data_set_name)
np.random.seed(42)
# this line downloads the video files of UCF-101 dataset if they are not available in the very_large_data folder
load_ucf(input_dir_path)
classifier = VGG16LSTMVideoClassifier()
history = classifier.fit(data_dir_path=input_dir_path, model_dir_path=output_dir_path, vgg16_include_top=False,
data_set_name=data_set_name)
plot_and_save_history(history, VGG16LSTMVideoClassifier.model_name,
report_dir_path + '/' + VGG16LSTMVideoClassifier.model_name + '-hi-dim-history.png')
示例3: main
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def main():
K.set_image_dim_ordering('tf')
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from keras_video_classifier.library.recurrent_networks import VGG16BidirectionalLSTMVideoClassifier
from keras_video_classifier.library.utility.plot_utils import plot_and_save_history
from keras_video_classifier.library.utility.ucf.UCF101_loader import load_ucf
data_set_name = 'UCF-101'
input_dir_path = os.path.join(os.path.dirname(__file__), 'very_large_data')
output_dir_path = os.path.join(os.path.dirname(__file__), 'models', data_set_name)
report_dir_path = os.path.join(os.path.dirname(__file__), 'reports', data_set_name)
np.random.seed(42)
# this line downloads the video files of UCF-101 dataset if they are not available in the very_large_data folder
load_ucf(input_dir_path)
classifier = VGG16BidirectionalLSTMVideoClassifier()
history = classifier.fit(data_dir_path=input_dir_path, model_dir_path=output_dir_path, vgg16_include_top=False,
data_set_name=data_set_name)
plot_and_save_history(history, VGG16BidirectionalLSTMVideoClassifier.model_name,
report_dir_path + '/' + VGG16BidirectionalLSTMVideoClassifier.model_name + '-hi-dim-history.png')
示例4: main
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def main():
K.set_image_dim_ordering('tf')
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from keras_video_classifier.library.utility.plot_utils import plot_and_save_history
from keras_video_classifier.library.recurrent_networks import VGG16LSTMVideoClassifier
from keras_video_classifier.library.utility.ucf.UCF101_loader import load_ucf
data_set_name = 'UCF-101'
input_dir_path = os.path.join(os.path.dirname(__file__), 'very_large_data')
output_dir_path = os.path.join(os.path.dirname(__file__), 'models', data_set_name)
report_dir_path = os.path.join(os.path.dirname(__file__), 'reports', data_set_name)
np.random.seed(42)
# this line downloads the video files of UCF-101 dataset if they are not available in the very_large_data folder
load_ucf(input_dir_path)
classifier = VGG16LSTMVideoClassifier()
history = classifier.fit(data_dir_path=input_dir_path, model_dir_path=output_dir_path, data_set_name=data_set_name)
plot_and_save_history(history, VGG16LSTMVideoClassifier.model_name,
report_dir_path + '/' + VGG16LSTMVideoClassifier.model_name + '-history.png')
示例5: set_img_format
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def set_img_format():
try:
if K.backend() == 'theano':
K.set_image_data_format('channels_first')
else:
K.set_image_data_format('channels_last')
except AttributeError:
if K._BACKEND == 'theano':
K.set_image_dim_ordering('th')
else:
K.set_image_dim_ordering('tf')
示例6: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def __init__(self, *args, **kwargs):
from keras.layers.core import Dense, Flatten
from keras.layers.convolutional import Convolution2D
from keras import backend as K
if K.backend() == 'theano':
K.set_image_dim_ordering('tf')
self.Dense = Dense
self.Flatten = Flatten
self.Convolution2D = Convolution2D
self.kernel = 4
self.stride = (2, 2)
super(ConvDQN, self).__init__(*args, **kwargs)
示例7: main
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def main():
K.set_image_dim_ordering('tf')
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from keras_video_classifier.library.recurrent_networks import VGG16LSTMVideoClassifier
from keras_video_classifier.library.utility.ucf.UCF101_loader import load_ucf, scan_ucf_with_labels
vgg16_include_top = False
data_dir_path = os.path.join(os.path.dirname(__file__), 'very_large_data')
model_dir_path = os.path.join(os.path.dirname(__file__), 'models', 'UCF-101')
config_file_path = VGG16LSTMVideoClassifier.get_config_file_path(model_dir_path,
vgg16_include_top=vgg16_include_top)
weight_file_path = VGG16LSTMVideoClassifier.get_weight_file_path(model_dir_path,
vgg16_include_top=vgg16_include_top)
np.random.seed(42)
load_ucf(data_dir_path)
predictor = VGG16LSTMVideoClassifier()
predictor.load_model(config_file_path, weight_file_path)
videos = scan_ucf_with_labels(data_dir_path, [label for (label, label_index) in predictor.labels.items()])
video_file_path_list = np.array([file_path for file_path in videos.keys()])
np.random.shuffle(video_file_path_list)
correct_count = 0
count = 0
for video_file_path in video_file_path_list:
label = videos[video_file_path]
predicted_label = predictor.predict(video_file_path)
print('predicted: ' + predicted_label + ' actual: ' + label)
correct_count = correct_count + 1 if label == predicted_label else correct_count
count += 1
accuracy = correct_count / count
print('accuracy: ', accuracy)
示例8: initialize_parameters
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def initialize_parameters(default_model = 'p2b1_default_model.txt'):
# Build benchmark object
p2b1Bmk = p2b1.BenchmarkP2B1(p2b1.file_path, default_model, 'keras',
prog='p2b1_baseline', desc='Train Molecular Frame Autoencoder - Pilot 2 Benchmark 1')
# Initialize parameters
GP = candle.finalize_parameters(p2b1Bmk)
#p2b1.logger.info('Params: {}'.format(gParameters))
print ('\nTraining parameters:')
for key in sorted(GP):
print ("\t%s: %s" % (key, GP[key]))
# print json.dumps(GP, indent=4, skipkeys=True, sort_keys=True)
if GP['backend'] != 'theano' and GP['backend'] != 'tensorflow':
sys.exit('Invalid backend selected: %s' % GP['backend'])
os.environ['KERAS_BACKEND'] = GP['backend']
reload(K)
'''
if GP['backend'] == 'theano':
K.set_image_dim_ordering('th')
elif GP['backend'] == 'tensorflow':
K.set_image_dim_ordering('tf')
'''
K.set_image_data_format('channels_last')
#"th" format means that the convolutional kernels will have the shape (depth, input_depth, rows, cols)
#"tf" format means that the convolutional kernels will have the shape (rows, cols, input_depth, depth)
print ("Image data format: ", K.image_data_format())
# print "Image ordering: ", K.image_dim_ordering()
return GP
示例9: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def __init__(self):
K.set_image_dim_ordering('tf')
self.generator = None
self.discriminator = None
self.model = None
self.img_width = 7
self.img_height = 7
self.img_channels = 1
self.random_input_dim = 100
self.text_input_dim = 100
self.config = None
self.glove_source_dir_path = './very_large_data'
self.glove_model = GloveModel()
示例10: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_dim_ordering [as 別名]
def __init__(self):
K.set_image_dim_ordering('tf')
self.generator = None
self.discriminator = None
self.model = None
self.img_width = 7
self.img_height = 7
self.img_channels = 1
self.text_input_dim = 100
self.config = None
self.glove_source_dir_path = './very_large_data'
self.glove_model = GloveModel()