當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.set_image_data_format方法代碼示例

本文整理匯總了Python中keras.backend.set_image_data_format方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.set_image_data_format方法的具體用法?Python backend.set_image_data_format怎麽用?Python backend.set_image_data_format使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.set_image_data_format方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_segment_2d

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_segment_2d():
    from keras import backend as K
    K.set_image_data_format("channels_last")  # Set at channels_first in test_deepseg_lesion.test_segment()

    contrast_test = 't2'
    model_path = os.path.join(sct.__sct_dir__, 'data', 'deepseg_sc_models', '{}_sc.h5'.format(contrast_test))   

    fname_t2 = os.path.join(sct.__sct_dir__, 'sct_testing_data/t2/t2.nii.gz')  # install: sct_download_data -d sct_testing_data
    fname_t2_seg = os.path.join(sct.__sct_dir__, 'sct_testing_data/t2/t2_seg.nii.gz')  # install: sct_download_data -d sct_testing_data

    img, gt = _preprocess_segment(fname_t2, fname_t2_seg, contrast_test)

    seg = deepseg_sc.segment_2d(model_fname=model_path, contrast_type=contrast_test, input_size=(64,64), im_in=img)
    assert seg.dtype == np.dtype('float32')

    seg_im = img.copy()
    seg_im.data = (seg > 0.5).astype(np.uint8)
    assert msct_image.compute_dice(seg_im, gt) > 0.80 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:20,代碼來源:test_deepseg_sc.py

示例2: test_segment_3d

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_segment_3d():
    from keras import backend as K
    K.set_image_data_format("channels_last")  # Set at channels_first in test_deepseg_lesion.test_segment()

    contrast_test = 't2'
    model_path = os.path.join(sct.__sct_dir__, 'data', 'deepseg_sc_models', '{}_sc_3D.h5'.format(contrast_test))   

    fname_t2 = os.path.join(sct.__sct_dir__, 'sct_testing_data/t2/t2.nii.gz')  # install: sct_download_data -d sct_testing_data
    fname_t2_seg = os.path.join(sct.__sct_dir__, 'sct_testing_data/t2/t2_seg.nii.gz')  # install: sct_download_data -d sct_testing_data

    img, gt = _preprocess_segment(fname_t2, fname_t2_seg, contrast_test, dim_3=True)

    seg = deepseg_sc.segment_3d(model_fname=model_path, contrast_type=contrast_test, im_in=img)
    assert seg.dtype == np.dtype('float32')

    seg_im = img.copy()
    seg_im.data = (seg > 0.5).astype(np.uint8)
    assert msct_image.compute_dice(seg_im, gt) > 0.80 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:20,代碼來源:test_deepseg_sc.py

示例3: across_data_formats

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def across_data_formats(func):
    """Function wrapper to run tests on multiple keras data_format and clean up after TensorFlow tests.

    Args:
        func: test function to clean up after.

    Returns:
        A function wrapping the input function.
    """
    @six.wraps(func)
    def wrapper(*args, **kwargs):
        for data_format in {'channels_first', 'channels_last'}:
            K.set_image_data_format(data_format)
            func(*args, **kwargs)
            if K.backend() == 'tensorflow':
                K.clear_session()
                tf.reset_default_graph()
    return wrapper 
開發者ID:raghakot,項目名稱:keras-vis,代碼行數:20,代碼來源:test_utils.py

示例4: build_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def build_model(config: BEGANConfig):
    K.set_image_data_format('channels_last')

    autoencoder = build_autoencoder(config)
    generator = build_generator(config)
    discriminator = build_discriminator(config, autoencoder)

    return autoencoder, generator, discriminator 
開發者ID:mokemokechicken,項目名稱:keras_BEGAN,代碼行數:10,代碼來源:models.py

示例5: set_img_format

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def set_img_format():
    try:
        if K.backend() == 'theano':
            K.set_image_data_format('channels_first')
        else:
            K.set_image_data_format('channels_last')
    except AttributeError:
        if K._BACKEND == 'theano':
            K.set_image_dim_ordering('th')
        else:
            K.set_image_dim_ordering('tf') 
開發者ID:Arsey,項目名稱:keras-transfer-learning-for-oxford102,代碼行數:13,代碼來源:util.py

示例6: test_DSSIM_channels_last

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_DSSIM_channels_last():
    prev_data = K.image_data_format()
    K.set_image_data_format('channels_last')
    for input_dim, kernel_size in zip([32, 33], [2, 3]):
        input_shape = [input_dim, input_dim, 3]
        X = np.random.random_sample(4 * input_dim * input_dim * 3)
        X = X.reshape([4] + input_shape)
        y = np.random.random_sample(4 * input_dim * input_dim * 3)
        y = y.reshape([4] + input_shape)

        model = Sequential()
        model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape,
                         activation='relu'))
        model.add(Conv2D(3, (3, 3), padding='same', input_shape=input_shape,
                         activation='relu'))
        adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
        model.compile(loss=DSSIMObjective(kernel_size=kernel_size),
                      metrics=['mse'],
                      optimizer=adam)
        model.fit(X, y, batch_size=2, epochs=1, shuffle='batch')

        # Test same
        x1 = K.constant(X, 'float32')
        x2 = K.constant(X, 'float32')
        dssim = DSSIMObjective(kernel_size=kernel_size)
        assert_allclose(0.0, K.eval(dssim(x1, x2)), atol=1e-4)

        # Test opposite
        x1 = K.zeros([4] + input_shape)
        x2 = K.ones([4] + input_shape)
        dssim = DSSIMObjective(kernel_size=kernel_size)
        assert_allclose(0.5, K.eval(dssim(x1, x2)), atol=1e-4)

    K.set_image_data_format(prev_data) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:36,代碼來源:dssim_test.py

示例7: test_DSSIM_channels_first

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_DSSIM_channels_first():
    prev_data = K.image_data_format()
    K.set_image_data_format('channels_first')
    for input_dim, kernel_size in zip([32, 33], [2, 3]):
        input_shape = [3, input_dim, input_dim]
        X = np.random.random_sample(4 * input_dim * input_dim * 3)
        X = X.reshape([4] + input_shape)
        y = np.random.random_sample(4 * input_dim * input_dim * 3)
        y = y.reshape([4] + input_shape)

        model = Sequential()
        model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape,
                         activation='relu'))
        model.add(Conv2D(3, (3, 3), padding='same', input_shape=input_shape,
                         activation='relu'))
        adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
        model.compile(loss=DSSIMObjective(kernel_size=kernel_size), metrics=['mse'],
                      optimizer=adam)
        model.fit(X, y, batch_size=2, epochs=1, shuffle='batch')

        # Test same
        x1 = K.constant(X, 'float32')
        x2 = K.constant(X, 'float32')
        dssim = DSSIMObjective(kernel_size=kernel_size)
        assert_allclose(0.0, K.eval(dssim(x1, x2)), atol=1e-4)

        # Test opposite
        x1 = K.zeros([4] + input_shape)
        x2 = K.ones([4] + input_shape)
        dssim = DSSIMObjective(kernel_size=kernel_size)
        assert_allclose(0.5, K.eval(dssim(x1, x2)), atol=1e-4)

    K.set_image_data_format(prev_data) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:35,代碼來源:dssim_test.py

示例8: test_get_img_shape_on_2d_image

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_get_img_shape_on_2d_image():
    n = 5
    channels = 4
    dim1 = 1
    dim2 = 2

    K.set_image_data_format('channels_first')
    assert (n, channels, dim1, dim2) == utils.get_img_shape(K.ones(shape=(n, channels, dim1, dim2)))

    K.set_image_data_format('channels_last')
    assert (n, channels, dim1, dim2) == utils.get_img_shape(K.ones(shape=(n, dim1, dim2, channels))) 
開發者ID:raghakot,項目名稱:keras-vis,代碼行數:13,代碼來源:test_utils.py

示例9: test_get_img_shape_on_3d_image

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_get_img_shape_on_3d_image():
    n = 5
    channels = 4
    dim1 = 1
    dim2 = 2
    dim3 = 3

    K.set_image_data_format('channels_first')
    assert (n, channels, dim1, dim2, dim3) == utils.get_img_shape(K.ones(shape=(n, channels, dim1, dim2, dim3)))

    K.set_image_data_format('channels_last')
    assert (n, channels, dim1, dim2, dim3) == utils.get_img_shape(K.ones(shape=(n, dim1, dim2, dim3, channels))) 
開發者ID:raghakot,項目名稱:keras-vis,代碼行數:14,代碼來源:test_utils.py

示例10: test_dssim_channels_last

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_dssim_channels_last(dummy):  # pylint:disable=unused-argument
    """ Basic test for DSSIM Loss """
    prev_data = K.image_data_format()
    K.set_image_data_format('channels_last')
    for input_dim, kernel_size in zip([32, 33], [2, 3]):
        input_shape = [input_dim, input_dim, 3]
        var_x = np.random.random_sample(4 * input_dim * input_dim * 3)
        var_x = var_x.reshape([4] + input_shape)
        var_y = np.random.random_sample(4 * input_dim * input_dim * 3)
        var_y = var_y.reshape([4] + input_shape)

        model = Sequential()
        model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape,
                         activation='relu'))
        model.add(Conv2D(3, (3, 3), padding='same', input_shape=input_shape,
                         activation='relu'))
        adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
        model.compile(loss=losses.DSSIMObjective(kernel_size=kernel_size),
                      metrics=['mse'],
                      optimizer=adam)
        model.fit(var_x, var_y, batch_size=2, epochs=1, shuffle='batch')

        # Test same
        x_1 = K.constant(var_x, 'float32')
        x_2 = K.constant(var_x, 'float32')
        dssim = losses.DSSIMObjective(kernel_size=kernel_size)
        assert_allclose(0.0, K.eval(dssim(x_1, x_2)), atol=1e-4)

        # Test opposite
        x_1 = K.zeros([4] + input_shape)
        x_2 = K.ones([4] + input_shape)
        dssim = losses.DSSIMObjective(kernel_size=kernel_size)
        assert_allclose(0.5, K.eval(dssim(x_1, x_2)), atol=1e-4)

    K.set_image_data_format(prev_data) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:37,代碼來源:losses_test.py

示例11: Panotti_CNN

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def Panotti_CNN(X_shape, nb_classes, nb_layers=4):
    # Inputs:
    #    X_shape = [ # spectrograms per batch, # audio channels, # spectrogram freq bins, # spectrogram time bins ]
    #    nb_classes = number of output n_classes
    #    nb_layers = number of conv-pooling sets in the CNN
    from keras import backend as K
    K.set_image_data_format('channels_last')                   # SHH changed on 3/1/2018 b/c tensorflow prefers channels_last

    nb_filters = 32  # number of convolutional filters = "feature maps"
    kernel_size = (3, 3)  # convolution kernel size
    pool_size = (2, 2)  # size of pooling area for max pooling
    cl_dropout = 0.5    # conv. layer dropout
    dl_dropout = 0.6    # dense layer dropout

    print(" MyCNN_Keras2: X_shape = ",X_shape,", channels = ",X_shape[3])
    input_shape = (X_shape[1], X_shape[2], X_shape[3])
    model = Sequential()
    model.add(Conv2D(nb_filters, kernel_size, padding='same', input_shape=input_shape, name="Input"))
    model.add(MaxPooling2D(pool_size=pool_size))
    model.add(Activation('relu'))        # Leave this relu & BN here.  ELU is not good here (my experience)
    model.add(BatchNormalization(axis=-1))  # axis=1 for 'channels_first'; but tensorflow preferse channels_last (axis=-1)

    for layer in range(nb_layers-1):   # add more layers than just the first
        model.add(Conv2D(nb_filters, kernel_size, padding='same'))
        model.add(MaxPooling2D(pool_size=pool_size))
        model.add(Activation('elu'))
        model.add(Dropout(cl_dropout))
        #model.add(BatchNormalization(axis=-1))  # ELU authors reccommend no BatchNorm. I confirm.

    model.add(Flatten())
    model.add(Dense(128))            # 128 is 'arbitrary' for now
    #model.add(Activation('relu'))   # relu (no BN) works ok here, however ELU works a bit better...
    model.add(Activation('elu'))
    model.add(Dropout(dl_dropout))
    model.add(Dense(nb_classes))
    model.add(Activation("softmax",name="Output"))
    return model


# Used for when you want to use weights from a previously-trained model,
# with a different set/number of output classes 
開發者ID:drscotthawley,項目名稱:panotti,代碼行數:43,代碼來源:models.py

示例12: resnet3d_test

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def resnet3d_test():
    """resnet3d test helper."""
    def f(model):
        K.set_image_data_format('channels_last')
        model.compile(loss="categorical_crossentropy", optimizer="sgd")
        assert True, "Failed to build with {}".format(K.image_data_format())
    return f 
開發者ID:JihongJu,項目名稱:keras-resnet3d,代碼行數:9,代碼來源:test_resnet3d.py

示例13: test_resnet3d_18

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_resnet3d_18(resnet3d_test):
    """Test 18."""
    K.set_image_data_format('channels_last')
    model = Resnet3DBuilder.build_resnet_18((224, 224, 224, 1), 2)
    resnet3d_test(model)
    K.set_image_data_format('channels_first')
    model = Resnet3DBuilder.build_resnet_18((1, 512, 512, 256), 2)
    resnet3d_test(model) 
開發者ID:JihongJu,項目名稱:keras-resnet3d,代碼行數:10,代碼來源:test_resnet3d.py

示例14: test_resnet3d_34

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_resnet3d_34(resnet3d_test):
    """Test 34."""
    K.set_image_data_format('channels_last')
    model = Resnet3DBuilder.build_resnet_34((224, 224, 224, 1), 2)
    resnet3d_test(model)
    K.set_image_data_format('channels_first')
    model = Resnet3DBuilder.build_resnet_34((1, 512, 512, 256), 2)
    resnet3d_test(model) 
開發者ID:JihongJu,項目名稱:keras-resnet3d,代碼行數:10,代碼來源:test_resnet3d.py

示例15: test_resnet3d_50

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import set_image_data_format [as 別名]
def test_resnet3d_50(resnet3d_test):
    """Test 50."""
    K.set_image_data_format('channels_last')
    model = Resnet3DBuilder.build_resnet_50((224, 224, 224, 1), 1, 1e-2)
    resnet3d_test(model)
    K.set_image_data_format('channels_first')
    model = Resnet3DBuilder.build_resnet_50((1, 512, 512, 256), 1, 1e-2)
    resnet3d_test(model) 
開發者ID:JihongJu,項目名稱:keras-resnet3d,代碼行數:10,代碼來源:test_resnet3d.py


注:本文中的keras.backend.set_image_data_format方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。