當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.round方法代碼示例

本文整理匯總了Python中keras.backend.round方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.round方法的具體用法?Python backend.round怎麽用?Python backend.round使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.round方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: yolo_correct_boxes

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import round [as 別名]
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
    '''Get corrected boxes'''
    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape/image_shape))
    offset = (input_shape-new_shape)/2./input_shape
    scale = input_shape/new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes =  K.concatenate([
        box_mins[..., 0:1],  # y_min
        box_mins[..., 1:2],  # x_min
        box_maxes[..., 0:1],  # y_max
        box_maxes[..., 1:2]  # x_max
    ])

    # Scale boxes back to original image shape.
    boxes *= K.concatenate([image_shape, image_shape])
    return boxes 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:26,代碼來源:model.py

示例2: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import round [as 別名]
def call(self, x, mask=None):
		if self.mode == 'maximum_likelihood':
			# draw maximum likelihood sample from Bernoulli distribution
			#    x* = argmax_x p(x) = 1         if p(x=1) >= 0.5
			#                         0         otherwise
			return K.round(x)
		elif self.mode == 'random':
			# draw random sample from Bernoulli distribution
			#    x* = x ~ p(x) = 1              if p(x=1) > uniform(0, 1)
			#                    0              otherwise
			#return self.srng.binomial(size=x.shape, n=1, p=x, dtype=K.floatx())
			return K.random_binomial(x.shape, p=x, dtype=K.floatx())
		elif self.mode == 'mean_field':
			# draw mean-field approximation sample from Bernoulli distribution
			#    x* = E[p(x)] = E[Bern(x; p)] = p
			return x
		elif self.mode == 'nrlu':
			return nrlu(x)
		else:
			raise NotImplementedError('Unknown sample mode!') 
開發者ID:bnsnapper,項目名稱:keras_bn_library,代碼行數:22,代碼來源:layers.py

示例3: _correct_boxes

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import round [as 別名]
def _correct_boxes(
            self, box_xy, box_wh, input_shape, image_shape):
        """Get corrected boxes, which are scaled to original shape."""
        box_yx = box_xy[..., ::-1]
        box_hw = box_wh[..., ::-1]
        input_shape = K.cast(input_shape, K.dtype(box_yx))
        image_shape = K.cast(image_shape, K.dtype(box_yx))
        new_shape = K.round(image_shape * K.min(input_shape / image_shape))
        offset = (input_shape - new_shape) / 2. / input_shape
        scale = input_shape / new_shape
        box_yx = (box_yx - offset) * scale
        box_hw *= scale

        box_mins = box_yx - (box_hw / 2.)
        box_maxes = box_yx + (box_hw / 2.)
        boxes = K.concatenate([
            box_mins[..., 0:1],  # y_min
            box_mins[..., 1:2],  # x_min
            box_maxes[..., 0:1],  # y_max
            box_maxes[..., 1:2]  # x_max
        ])

        # Scale boxes back to original image shape.
        boxes *= K.concatenate([image_shape, image_shape])
        return boxes 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:27,代碼來源:keras_yolov3.py

示例4: yolo_correct_boxes

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import round [as 別名]
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):

    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape/image_shape))
    offset = (input_shape-new_shape)/2./input_shape
    scale = input_shape/new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes =  K.concatenate([
        box_mins[..., 0:1],
        box_mins[..., 1:2],
        box_maxes[..., 0:1],
        box_maxes[..., 1:2]
    ])


    boxes *= K.concatenate([image_shape, image_shape])
    return boxes 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:26,代碼來源:utils.py

示例5: correct_boxes

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import round [as 別名]
def correct_boxes(box_xy, box_wh, input_shape, image_shape):
    '''Get corrected boxes'''

    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape / image_shape))
    offset = (input_shape - new_shape) / 2. / input_shape
    scale = input_shape / new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes = K.concatenate([
        box_mins[..., 0:1],  # y_min
        box_mins[..., 1:2],  # x_min
        box_maxes[..., 0:1],  # y_max
        box_maxes[..., 1:2]  # x_max
    ])

    # Scale boxes back to original image shape.
    boxes *= K.concatenate([image_shape, image_shape])
    return boxes 
開發者ID:sthanhng,項目名稱:yoloface,代碼行數:27,代碼來源:model.py

示例6: matthews

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import round [as 別名]
def matthews(y_true, y_pred):

    from keras import backend as K
    y_pred_pos = K.round(K.clip(y_pred, 0, 1))
    y_pred_neg = 1 - y_pred_pos

    y_pos = K.round(K.clip(y_true, 0, 1))
    y_neg = 1 - y_pos

    tp = K.sum(y_pos * y_pred_pos)
    tn = K.sum(y_neg * y_pred_neg)

    fp = K.sum(y_neg * y_pred_pos)
    fn = K.sum(y_pos * y_pred_neg)

    numerator = (tp * tn - fp * fn)
    denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))

    return numerator / (denominator + K.epsilon()) 
開發者ID:autonomio,項目名稱:talos,代碼行數:21,代碼來源:keras_metrics.py

示例7: contingency_table

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import round [as 別名]
def contingency_table(y, z):
    """Compute contingency table."""
    y = K.round(y)
    z = K.round(z)

    def count_matches(a, b):
        tmp = K.concatenate([a, b])
        return K.sum(K.cast(K.all(tmp, -1), K.floatx()))

    ones = K.ones_like(y)
    zeros = K.zeros_like(y)
    y_ones = K.equal(y, ones)
    y_zeros = K.equal(y, zeros)
    z_ones = K.equal(z, ones)
    z_zeros = K.equal(z, zeros)

    tp = count_matches(y_ones, z_ones)
    tn = count_matches(y_zeros, z_zeros)
    fp = count_matches(y_zeros, z_ones)
    fn = count_matches(y_ones, z_zeros)

    return (tp, tn, fp, fn) 
開發者ID:cangermueller,項目名稱:deepcpg,代碼行數:24,代碼來源:metrics.py

示例8: mcor

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import round [as 別名]
def mcor(y_true, y_pred):
     #matthews_correlation
     y_pred_pos = K.round(K.clip(y_pred, 0, 1))
     y_pred_neg = 1 - y_pred_pos
    
     y_pos = K.round(K.clip(y_true, 0, 1))
     y_neg = 1 - y_pos
    
     tp = K.sum(y_pos * y_pred_pos)
     tn = K.sum(y_neg * y_pred_neg)
    
     fp = K.sum(y_neg * y_pred_pos)
     fn = K.sum(y_pos * y_pred_neg)
     
     numerator = (tp * tn - fp * fn)
     denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
     
     return numerator / (denominator + K.epsilon()) 
開發者ID:RichardBJ,項目名稱:Deep-Channel,代碼行數:20,代碼來源:predict_deepchannel_QuB.py

示例9: f1

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import round [as 別名]
def f1(y_true, y_pred):
    def recall(y_true, y_pred):
        """Recall metric.
        Only computes a batch-wise average of recall.
        Computes the recall, a metric for multi-label classification of
        how many relevant items are selected.
        """
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
        possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
        recall = true_positives / (possible_positives + K.epsilon())
        return recall
    
    def precision(y_true, y_pred):
        """Precision metric.
        Only computes a batch-wise average of precision.
        Computes the precision, a metric for multi-label classification of
        how many selected items are relevant.
        """
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
        predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
        precision = true_positives / (predicted_positives + K.epsilon())
        return precision
    precision = precision(y_true, y_pred)
    recall = recall(y_true, y_pred)
    return 2*((precision*recall)/(precision+recall+K.epsilon())) 
開發者ID:RichardBJ,項目名稱:Deep-Channel,代碼行數:27,代碼來源:predict_deepchannel_QuB.py


注:本文中的keras.backend.round方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。