本文整理匯總了Python中keras.backend.rnn方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.rnn方法的具體用法?Python backend.rnn怎麽用?Python backend.rnn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.rnn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def call(self, x, mask=None):
input_shape = self.input_spec[0].shape
en_seq = x
x_input = x[:, input_shape[1]-1, :]
x_input = K.repeat(x_input, input_shape[1])
initial_states = self.get_initial_states(x_input)
constants = super(PointerLSTM, self).get_constants(x_input)
constants.append(en_seq)
preprocessed_input = self.preprocess_input(x_input)
last_output, outputs, states = K.rnn(self.step, preprocessed_input,
initial_states,
go_backwards=self.go_backwards,
constants=constants,
input_length=input_shape[1])
return outputs
示例2: _forward
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def _forward(x, reduce_step, initial_states, U, mask=None):
'''Forward recurrence of the linear chain crf.'''
def _forward_step(energy_matrix_t, states):
alpha_tm1 = states[-1]
new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t)
return new_states[0], new_states
U_shared = K.expand_dims(K.expand_dims(U, 0), 0)
if mask is not None:
mask = K.cast(mask, K.floatx())
mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3)
U_shared = U_shared * mask_U
inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared
inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])], axis=1)
last, values, _ = K.rnn(_forward_step, inputs, initial_states)
return last, values
示例3: _backward
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def _backward(gamma, mask):
'''Backward recurrence of the linear chain crf.'''
gamma = K.cast(gamma, 'int32')
def _backward_step(gamma_t, states):
y_tm1 = K.squeeze(states[0], 0)
y_t = batch_gather(gamma_t, y_tm1)
return y_t, [K.expand_dims(y_t, 0)]
initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)]
_, y_rev, _ = K.rnn(_backward_step,
gamma,
initial_states,
go_backwards=True)
y = K.reverse(y_rev, 1)
if mask is not None:
mask = K.cast(mask, dtype='int32')
# mask output
y *= mask
# set masked values to -1
y += -(1 - mask)
return y
示例4: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def call(self, x, mask=None):
input_shape = self.input_spec[0].shape
initial_states = self.get_initial_states(x)
constants = self.get_constants(x)
preprocessed_input = self.preprocess_input(x)
last_output, outputs, states = K.rnn(self.step, preprocessed_input,
initial_states,
go_backwards=False,
mask=mask,
constants=constants,
unroll=False,
input_length=input_shape[1])
if last_output.ndim == 3:
last_output = K.expand_dims(last_output, dim=0)
return last_output
示例5: _forward
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def _forward(x, reduce_step, initial_states, U, mask=None):
"""Forward recurrence of the linear chain crf."""
def _forward_step(energy_matrix_t, states):
alpha_tm1 = states[-1]
new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t)
return new_states[0], new_states
U_shared = K.expand_dims(K.expand_dims(U, 0), 0)
if mask is not None:
mask = K.cast(mask, K.floatx())
mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3)
U_shared = U_shared * mask_U
inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared
inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])], axis=1)
last, values, _ = K.rnn(_forward_step, inputs, initial_states)
return last, values
示例6: _backward
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def _backward(gamma, mask):
"""Backward recurrence of the linear chain crf."""
gamma = K.cast(gamma, 'int32')
def _backward_step(gamma_t, states):
y_tm1 = K.squeeze(states[0], 0)
y_t = batch_gather(gamma_t, y_tm1)
return y_t, [K.expand_dims(y_t, 0)]
initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)]
_, y_rev, _ = K.rnn(_backward_step,
gamma,
initial_states,
go_backwards=True)
y = K.reverse(y_rev, 1)
if mask is not None:
mask = K.cast(mask, dtype='int32')
# mask output
y *= mask
# set masked values to -1
y += -(1 - mask)
return y
示例7: step
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def step(self, input_energy_t, states, return_logZ=True):
# not in the following `prev_target_val` has shape = (B, F)
# where B = batch_size, F = output feature dim
# Note: `i` is of float32, due to the behavior of `K.rnn`
prev_target_val, i, chain_energy = states[:3]
t = K.cast(i[0, 0], dtype='int32')
if len(states) > 3:
if K.backend() == 'theano':
m = states[3][:, t:(t + 2)]
else:
m = K.tf.slice(states[3], [0, t], [-1, 2])
input_energy_t = input_energy_t * K.expand_dims(m[:, 0])
chain_energy = chain_energy * K.expand_dims(K.expand_dims(m[:, 0] * m[:, 1])) # (1, F, F)*(B, 1, 1) -> (B, F, F)
if return_logZ:
energy = chain_energy + K.expand_dims(input_energy_t - prev_target_val, 2) # shapes: (1, B, F) + (B, F, 1) -> (B, F, F)
new_target_val = K.logsumexp(-energy, 1) # shapes: (B, F)
return new_target_val, [new_target_val, i + 1]
else:
energy = chain_energy + K.expand_dims(input_energy_t + prev_target_val, 2)
min_energy = K.min(energy, 1)
argmin_table = K.cast(K.argmin(energy, 1), K.floatx()) # cast for tf-version `K.rnn`
return argmin_table, [min_energy, i + 1]
示例8: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def call(self, x, mask=None, **kwargs):
input_shape = K.int_shape(x)
res = super(ShareableGRU, self).call(x, mask, **kwargs)
self.input_spec = [InputSpec(shape=(self.input_spec[0].shape[0],
None,
self.input_spec[0].shape[2]))]
if K.ndim(x) == K.ndim(res):
# A recent change in Keras
# (https://github.com/fchollet/keras/commit/a9b6bef0624c67d6df1618ca63d8e8141b0df4d0)
# made it so that K.rnn with a tensorflow backend does not retain shape information for
# the sequence length, even if it's present in the input. We need to fix that here so
# that our models have the right shape information. A simple K.reshape is good enough
# to fix this.
result_shape = K.int_shape(res)
if input_shape[1] is not None and result_shape[1] is None:
shape = (input_shape[0] if input_shape[0] is not None else -1,
input_shape[1], result_shape[2])
res = K.reshape(res, shape=shape)
return res
示例9: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def call(self, x, mask=None):
# input_shape = (batch_size, input_length, input_dim). This needs to be defined in build.
read_output, initial_memory_states, output_mask = self.read(x, mask)
initial_write_states = self.writer.get_initial_states(read_output) # h_0 and c_0 of the writer LSTM
initial_states = initial_memory_states + initial_write_states
# last_output: (batch_size, output_dim)
# all_outputs: (batch_size, input_length, output_dim)
# last_states:
# last_memory_state: (batch_size, input_length, output_dim)
# last_output
# last_writer_ct
last_output, all_outputs, last_states = K.rnn(self.compose_and_write_step, read_output, initial_states,
mask=output_mask)
last_memory = last_states[0]
if self.return_mode == "last_output":
return last_output
elif self.return_mode == "all_outputs":
return all_outputs
else:
# return mode is output_and_memory
expanded_last_output = K.expand_dims(last_output, dim=1) # (batch_size, 1, output_dim)
# (batch_size, 1+input_length, output_dim)
return K.concatenate([expanded_last_output, last_memory], axis=1)
示例10: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def call(self, x, mask=None):
input_shape = self.input_spec[0].shape
if self.layer.unroll and input_shape[1] is None:
raise ValueError('Cannot unroll a RNN if the '
'time dimension is undefined. \n'
'- If using a Sequential model, '
'specify the time dimension by passing '
'an `input_shape` or `batch_input_shape` '
'argument to your first layer. If your '
'first layer is an Embedding, you can '
'also use the `input_length` argument.\n'
'- If using the functional API, specify '
'the time dimension by passing a `shape` '
'or `batch_shape` argument to your Input layer.')
initial_states = (self.layer.states if self.layer.stateful else
self.layer.get_initial_states(x))
constants = self.get_constants(x)
preprocessed_input = self.layer.preprocess_input(x)
last_output, outputs, states = K.rnn(
self.step, preprocessed_input, initial_states,
go_backwards=self.layer.go_backwards,
mask=mask,
constants=constants,
unroll=self.layer.unroll,
input_length=input_shape[1])
if self.layer.stateful:
updates = []
for i in range(len(states)):
updates.append((self.layer.states[i], states[i]))
self.add_update(updates, x)
return outputs if self.layer.return_sequences else last_output
示例11: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def call(self, x, mask=None):
input_shape = self.input_spec[0].shape
# state format: [h(t-1), c(t-1), y(t-1)]
#h_0 = K.zeros_like(x[:, 0, :])
#c_0 = K.zeros_like(x[:, 0, :])
h_0 = K.reshape(x, (-1, self.input_dim))
c_0 = K.reshape(x, (-1, self.input_dim))
initial_states = [h_0, c_0]
#self.states = [None, None]
#initial_states = self.get_initial_states(x)
last_output, outputs, states = K.rnn(step_function=self.step,
inputs=x,
initial_states=initial_states,
go_backwards=self.go_backwards,
mask=mask,
constants=None,
unroll=self.unroll,
input_length=input_shape[1])
if self.return_sequences:
return outputs
else:
return last_output
示例12: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def call(self, x, mask=None):
# input shape: (nb_samples, time (padded with zeros), input_dim)
# note that the .build() method of subclasses MUST define
# self.input_spec with a complete input shape.
input_shape = self.input_spec[0].shape
if K._BACKEND == 'tensorflow':
if not input_shape[1]:
raise Exception('When using TensorFlow, you should define '
'explicitly the number of timesteps of '
'your sequences.\n'
'If your first layer is an Embedding, '
'make sure to pass it an "input_length" '
'argument. Otherwise, make sure '
'the first layer has '
'an "input_shape" or "batch_input_shape" '
'argument, including the time axis. '
'Found input shape at layer ' + self.name +
': ' + str(input_shape))
if self.layer.stateful:
initial_states = self.layer.states
else:
initial_states = self.layer.get_initial_states(x)
constants = self.get_constants(x)
preprocessed_input = self.layer.preprocess_input(x)
last_output, outputs, states = K.rnn(self.step, preprocessed_input,
initial_states,
go_backwards=self.layer.go_backwards,
mask=mask,
constants=constants,
unroll=self.layer.unroll,
input_length=input_shape[1])
if self.layer.stateful:
self.updates = []
for i in range(len(states)):
self.updates.append((self.layer.states[i], states[i]))
if self.layer.return_sequences:
return outputs
else:
return last_output
示例13: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def call(self, x, use_teacher_forcing=True, training=None):
# TODO: check that model is loading from .h5 correctly
# TODO: for now cannot be shared layer
# (only can it we use (or not use) teacher forcing in all cases simultationsly)
# this sequence is used only to extract the amount of timesteps (the same as in output sequence)
fake_input = x
if isinstance(x, list):
# teacher forcing for training
self.x_seq, self.y_true = x
self.use_teacher_forcing = use_teacher_forcing
fake_input = K.expand_dims(self.y_true)
else:
# inference
self.x_seq = x
self.use_teacher_forcing = False
# apply a dense layer over the time dimension of the sequence
# do it here because it doesn't depend on any previous steps
# therefore we can save computation time:
self._uxpb = _time_distributed_dense(self.x_seq, self.U_a, b=self.b_a,
dropout=self.dropout,
input_dim=self.input_dim,
timesteps=self.timesteps,
output_dim=self.units,
training=training)
last_output, outputs, states = K.rnn(
self.step,
inputs=fake_input,
initial_states=self.get_initial_state(self.x_seq)
)
return outputs
示例14: step
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def step(self, input_energy_t, states, return_logZ=True):
# not in the following `prev_target_val` has shape = (B, F)
# where B = batch_size, F = output feature dim
# Note: `i` is of float32, due to the behavior of `K.rnn`
prev_target_val, i, chain_energy = states[:3]
t = K.cast(i[0, 0], dtype='int32')
if len(states) > 3:
if K.backend() == 'theano':
m = states[3][:, t:(t + 2)]
else:
m = K.slice(states[3], [0, t], [-1, 2])
input_energy_t = input_energy_t * K.expand_dims(m[:, 0])
# (1, F, F)*(B, 1, 1) -> (B, F, F)
chain_energy = chain_energy * K.expand_dims(
K.expand_dims(m[:, 0] * m[:, 1]))
if return_logZ:
# shapes: (1, B, F) + (B, F, 1) -> (B, F, F)
energy = chain_energy + K.expand_dims(input_energy_t - prev_target_val, 2)
new_target_val = K.logsumexp(-energy, 1) # shapes: (B, F)
return new_target_val, [new_target_val, i + 1]
else:
energy = chain_energy + K.expand_dims(input_energy_t + prev_target_val, 2)
min_energy = K.min(energy, 1)
# cast for tf-version `K.rnn
argmin_table = K.cast(K.argmin(energy, 1), K.floatx())
return argmin_table, [min_energy, i + 1]
示例15: test_rnn_no_states
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import rnn [as 別名]
def test_rnn_no_states(self):
# implement a simple RNN without states
input_dim = 8
output_dim = 4
timesteps = 5
_, x = parse_shape_or_val((32, timesteps, input_dim))
_, wi = parse_shape_or_val((input_dim, output_dim))
x_k = K.variable(x)
wi_k = K.variable(wi)
def rnn_fn(x_k, h_k):
assert len(h_k) == 0
y_k = K.dot(x_k, wi_k)
return y_k, []
last_y1, y1, h1 = ref_rnn(x, [wi, None, None], None,
go_backwards=False, mask=None)
last_y2, y2, h2 = K.rnn(rnn_fn, x_k, [],
go_backwards=False, mask=None)
assert len(h2) == 0
last_y2 = K.eval(last_y2)
y2 = K.eval(y2)
assert_allclose(last_y1, last_y2, atol=1e-05)
assert_allclose(y1, y2, atol=1e-05)