當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.repeat方法代碼示例

本文整理匯總了Python中keras.backend.repeat方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.repeat方法的具體用法?Python backend.repeat怎麽用?Python backend.repeat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.repeat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def call(self, x):
        mean = K.mean(x, axis=-1)
        std = K.std(x, axis=-1)

        if len(x.shape) == 3:
            mean = K.permute_dimensions(
                K.repeat(mean, x.shape.as_list()[-1]),
                [0,2,1]
            )
            std = K.permute_dimensions(
                K.repeat(std, x.shape.as_list()[-1]),
                [0,2,1] 
            )
            
        elif len(x.shape) == 2:
            mean = K.reshape(
                K.repeat_elements(mean, x.shape.as_list()[-1], 0),
                (-1, x.shape.as_list()[-1])
            )
            std = K.reshape(
                K.repeat_elements(mean, x.shape.as_list()[-1], 0),
                (-1, x.shape.as_list()[-1])
            )
        
        return self._g * (x - mean) / (std + self._epsilon) + self._b 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:27,代碼來源:layer_normalization.py

示例2: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def call(self, x, mask=None):
        input_shape = self.input_spec[0].shape
        en_seq = x
        x_input = x[:, input_shape[1]-1, :]
        x_input = K.repeat(x_input, input_shape[1])
        initial_states = self.get_initial_states(x_input)

        constants = super(PointerLSTM, self).get_constants(x_input)
        constants.append(en_seq)
        preprocessed_input = self.preprocess_input(x_input)

        last_output, outputs, states = K.rnn(self.step, preprocessed_input,
                                             initial_states,
                                             go_backwards=self.go_backwards,
                                             constants=constants,
                                             input_length=input_shape[1])

        return outputs 
開發者ID:zygmuntz,項目名稱:pointer-networks-experiments,代碼行數:20,代碼來源:PointerLSTM.py

示例3: step

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def step(self, x_input, states):
    	#print "x_input:", x_input, x_input.shape
    	# <TensorType(float32, matrix)>
    	
        input_shape = self.input_spec[0].shape
        en_seq = states[-1]
        _, [h, c] = super(PointerLSTM, self).step(x_input, states[:-1])

        # vt*tanh(W1*e+W2*d)
        dec_seq = K.repeat(h, input_shape[1])
        Eij = time_distributed_dense(en_seq, self.W1, output_dim=1)
        Dij = time_distributed_dense(dec_seq, self.W2, output_dim=1)
        U = self.vt * tanh(Eij + Dij)
        U = K.squeeze(U, 2)

        # make probability tensor
        pointer = softmax(U)
        return pointer, [h, c] 
開發者ID:zygmuntz,項目名稱:pointer-networks-experiments,代碼行數:20,代碼來源:PointerLSTM.py

示例4: test

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def test(self):
        G_weights_dir = os.path.join(self.model_save_dir, 'G_weights.hdf5')
        if not os.path.isfile(G_weights_dir):
            print("Don't find weight's generator model")
        else:
            self.G.load_weights(G_weights_dir)

        data_iter = get_loader(self.Image_data_class.test_dataset, self.Image_data_class.test_dataset_label, self.Image_data_class.test_dataset_fix_label, 
                               image_size=self.image_size, batch_size=self.batch_size, mode=self.mode)        
        n_batches = int(len(self.sample_step) / self.batch_size)
        total_samples = n_batches * self.batch_size

        for i in range(n_batches):
            imgs, orig_labels, target_labels, fix_labels, names = next(data_iter)
            for j in range(self.batch_size):
                preds = self.G.predict([np.repeat(np.expand_dims(imgs[j], axis = 0), len(self.selected_attrs), axis = 0), fix_labels[j]])
                for k in range(len(self.selected_attrs)):                    
                    Image.fromarray((preds[k]*127.5 + 127.5).astype(np.uint8)).save(os.path.join(self.result_dir, names[j].split(os.path.sep)[-1].split('.')[0] + f'_{k + 1}.png')) 
開發者ID:hoangthang1607,項目名稱:StarGAN-Keras,代碼行數:20,代碼來源:StarGAN.py

示例5: custom

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def custom(self):
        G_weights_dir = os.path.join(self.model_save_dir, 'G_weights.hdf5')
        if not os.path.isfile(G_weights_dir):
            print("Don't find weight's generator model")
        else:
            self.G.load_weights(G_weights_dir)                        

        path = os.path.join(self.sample_dir, self.custom_image_name)
        target_list = create_labels([self.custom_image_label], selected_attrs=self.selected_attrs)[0]
        image = cv2.imread(path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = resize_keep_aspect_ratio(image, width = self.image_size, height = self.image_size)
        image = np.array([image])/127.5 - 1
        preds = self.G.predict([np.repeat(image, len(self.selected_attrs), axis = 0), target_list])
        for k in range(len(self.selected_attrs)):                    
            Image.fromarray((preds[k]*127.5 + 127.5).astype(np.uint8)).save(os.path.join(self.sample_dir, self.custom_image_name.split('.')[0] + f'_{k + 1}.png')) 
開發者ID:hoangthang1607,項目名稱:StarGAN-Keras,代碼行數:18,代碼來源:StarGAN.py

示例6: get_batch

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def get_batch(self, model, batch_size, gamma=0.9):
        if self.fast:
            return self.get_batch_fast(model, batch_size, gamma)
        if len(self.memory) < batch_size:
            batch_size = len(self.memory)
        nb_actions = model.get_output_shape_at(0)[-1]
        samples = np.array(sample(self.memory, batch_size))
        input_dim = np.prod(self.input_shape)
        S = samples[:, 0 : input_dim]
        a = samples[:, input_dim]
        r = samples[:, input_dim + 1]
        S_prime = samples[:, input_dim + 2 : 2 * input_dim + 2]
        game_over = samples[:, 2 * input_dim + 2]
        r = r.repeat(nb_actions).reshape((batch_size, nb_actions))
        game_over = game_over.repeat(nb_actions).reshape((batch_size, nb_actions))
        S = S.reshape((batch_size, ) + self.input_shape)
        S_prime = S_prime.reshape((batch_size, ) + self.input_shape)
        X = np.concatenate([S, S_prime], axis=0)
        Y = model.predict(X)
        Qsa = np.max(Y[batch_size:], axis=1).repeat(nb_actions).reshape((batch_size, nb_actions))
        delta = np.zeros((batch_size, nb_actions))
        a = np.cast['int'](a)
        delta[np.arange(batch_size), a] = 1
        targets = (1 - delta) * Y[:batch_size] + delta * (r + gamma * (1 - game_over) * Qsa)
        return S, targets 
開發者ID:farizrahman4u,項目名稱:qlearning4k,代碼行數:27,代碼來源:memory.py

示例7: set_batch_function

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def set_batch_function(self, model, input_shape, batch_size, nb_actions, gamma):
        input_dim = np.prod(input_shape)
        samples = K.placeholder(shape=(batch_size, input_dim * 2 + 3))
        S = samples[:, 0 : input_dim]
        a = samples[:, input_dim]
        r = samples[:, input_dim + 1]
        S_prime = samples[:, input_dim + 2 : 2 * input_dim + 2]
        game_over = samples[:, 2 * input_dim + 2 : 2 * input_dim + 3]
        r = K.reshape(r, (batch_size, 1))
        r = K.repeat(r, nb_actions)
        r = K.reshape(r, (batch_size, nb_actions))
        game_over = K.repeat(game_over, nb_actions)
        game_over = K.reshape(game_over, (batch_size, nb_actions))
        S = K.reshape(S, (batch_size, ) + input_shape)
        S_prime = K.reshape(S_prime, (batch_size, ) + input_shape)
        X = K.concatenate([S, S_prime], axis=0)
        Y = model(X)
        Qsa = K.max(Y[batch_size:], axis=1)
        Qsa = K.reshape(Qsa, (batch_size, 1))
        Qsa = K.repeat(Qsa, nb_actions)
        Qsa = K.reshape(Qsa, (batch_size, nb_actions))
        delta = K.reshape(self.one_hot(a, nb_actions), (batch_size, nb_actions))
        targets = (1 - delta) * Y[:batch_size] + delta * (r + gamma * (1 - game_over) * Qsa)
        self.batch_function = K.function(inputs=[samples], outputs=[S, targets]) 
開發者ID:farizrahman4u,項目名稱:qlearning4k,代碼行數:26,代碼來源:memory.py

示例8: _time_distributed_dense

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def _time_distributed_dense(x, w, b=None, dropout=None,
                            input_dim=None, output_dim=None,
                            timesteps=None, training=None):
    """Apply `y . w + b` for every temporal slice y of x.
    # Arguments
        x: input tensor.
        w: weight matrix.
        b: optional bias vector.
        dropout: wether to apply dropout (same dropout mask
            for every temporal slice of the input).
        input_dim: integer; optional dimensionality of the input.
        output_dim: integer; optional dimensionality of the output.
        timesteps: integer; optional number of timesteps.
        training: training phase tensor or boolean.
    # Returns
        Output tensor.
    """
    if not input_dim:
        input_dim = K.shape(x)[2]
    if not timesteps:
        timesteps = K.shape(x)[1]
    if not output_dim:
        output_dim = K.shape(w)[1]

    if dropout is not None and 0. < dropout < 1.:
        # apply the same dropout pattern at every timestep
        ones = K.ones_like(K.reshape(x[:, 0, :], (-1, input_dim)))
        dropout_matrix = K.dropout(ones, dropout)
        expanded_dropout_matrix = K.repeat(dropout_matrix, timesteps)
        x = K.in_train_phase(x * expanded_dropout_matrix, x, training=training)

    # maybe below is more clear implementation compared to older keras
    # at least it works the same for tensorflow, but not tested on other backends
    x = K.dot(x, w)
    if b is not None:
        x = K.bias_add(x, b)
    return x 
開發者ID:asmekal,項目名稱:keras-monotonic-attention,代碼行數:39,代碼來源:attention_decoder.py

示例9: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def call(self, inputs):
        features = inputs[0]
        rois = inputs[1]
        n_roi_boxes = K.shape(rois)[1]

        # roisには[0,0,0,0]のRoIも含むが、バッチ毎の要素數を合わせるため、そのまま処理する。

        # crop_and_resizeの準備
        # roisを0軸目を除き(バッチを示す次元を除き)、フラットにする。
        roi_unstack = K.concatenate(tf.unstack(rois), axis=0)
        # roi_unstackの各roiに対応するバッチを指すindex
        batch_pos = K.flatten(
            K.repeat(K.reshape(K.arange(self.batch_size), [-1, 1]),
                     n_roi_boxes))
        # RoiAlignの代わりにcrop_and_resizeを利用。
        # crop_and_resize內部でbilinear interporlationしてようなので、アルゴリズム的には同じっぽい
        crop_boxes = tf.image.crop_and_resize(features,
                                              roi_unstack, batch_pos,
                                              self.out_shape)

        # (N * n_rois, out_size, out_size, channels)
        # から
        # (N, n_rois, out_size, out_size, channels)
        # へ変換
        crop_boxes = K.reshape(crop_boxes,
                               [self.batch_size, n_roi_boxes]
                               + self.out_shape + [-1])
        log.tfprint(crop_boxes, "crop_boxes: ")
        return crop_boxes 
開發者ID:shtamura,項目名稱:maskrcnn,代碼行數:31,代碼來源:roi_align_layer.py

示例10: repeat_vector

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def repeat_vector(x, rep, axis):
    return K.repeat(x, rep, axis) 
開發者ID:jinfengr,項目名稱:neural-tweet-search,代碼行數:4,代碼來源:attention_model.py

示例11: time_distributed_dense

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def time_distributed_dense(x, w, b=None, dropout=None,
                           input_dim=None, units=None, timesteps=None):
    """Apply `y . w + b` for every temporal slice y of x.
    # Arguments
        x: input tensor.
        w: weight matrix.
        b: optional bias vector.
        dropout: wether to apply dropout (same dropout mask
            for every temporal slice of the input).
        input_dim: integer; optional dimensionality of the input.
        units: integer; optional dimensionality of the output.
        timesteps: integer; optional number of timesteps.
    # Returns
        Output tensor.
    """
    if not input_dim:
        input_dim = K.shape(x)[2]
    if not timesteps:
        timesteps = K.shape(x)[1]
    if not units:
        units = K.shape(w)[1]

    if dropout is not None and 0. < dropout < 1.:
        # apply the same dropout pattern at every timestep
        ones = K.ones_like(K.reshape(x[:, 0, :], (-1, input_dim)))
        dropout_matrix = K.dropout(ones, dropout)
        expanded_dropout_matrix = K.repeat(dropout_matrix, timesteps)
        x = K.in_train_phase(x * expanded_dropout_matrix, x)

    # collapse time dimension and batch dimension together
    x = K.reshape(x, (-1, input_dim))
    x = K.dot(x, w)
    if b:
        x += b
    # reshape to 3D tensor
    if K.backend() == 'tensorflow':
        x = K.reshape(x, K.stack([-1, timesteps, units]))
        x.set_shape([None, None, units])
    else:
        x = K.reshape(x, (-1, timesteps, units))
    return x 
開發者ID:wentaozhu,項目名稱:recurrent-attention-for-QA-SQUAD-based-on-keras,代碼行數:43,代碼來源:rnnlayer.py

示例12: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def call(self, inputs, mask=None):
        imgs, embs = inputs
        reshaped_shape = imgs.shape[:3].concatenate(embs.shape[1])
        embs = K.repeat(embs, imgs.shape[1] * imgs.shape[2])
        embs = K.reshape(embs, reshaped_shape)
        return K.concatenate([imgs, embs], axis=3) 
開發者ID:baldassarreFe,項目名稱:deep-koalarization,代碼行數:8,代碼來源:fusion_layer.py

示例13: step

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def step(self, x_input, states):
        input_shape = self.input_spec[0].shape
        en_seq = states[-1]
        _, [h, c] = super(PointerLSTM, self).step(x_input, states[:-1])

        # vt*tanh(W1*e+W2*d)
        dec_seq = K.repeat(h, input_shape[1])
        Eij = time_distributed_dense(en_seq, self.W1, output_dim=1)
        Dij = time_distributed_dense(dec_seq, self.W2, output_dim=1)
        U = self.vt * tanh(Eij + Dij)
        U = K.squeeze(U, 2)

        # make probability tensor
        pointer = softmax(U)
        return pointer, [h, c] 
開發者ID:keon,項目名稱:pointer-networks,代碼行數:17,代碼來源:PointerLSTM.py

示例14: build_generator

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def build_generator(self):
        """Generator network."""
        # Input tensors
        inp_c = Input(shape = (self.c_dim, ))
        inp_img = Input(shape = (self.image_size, self.image_size, 3))
    
        # Replicate spatially and concatenate domain information
        c = Lambda(lambda x: K.repeat(x, self.image_size**2))(inp_c)
        c = Reshape((self.image_size, self.image_size, self.c_dim))(c)
        x = Concatenate()([inp_img, c])
    
        # First Conv2D
        x = Conv2D(filters = self.g_conv_dim, kernel_size = 7, strides = 1, padding = 'same', use_bias = False)(x)
        x = InstanceNormalization(axis = -1)(x)
        x = ReLU()(x)
    
        # Down-sampling layers
        curr_dim = self.g_conv_dim
        for i in range(2):
            x = ZeroPadding2D(padding = 1)(x)
            x = Conv2D(filters = curr_dim*2, kernel_size = 4, strides = 2, padding = 'valid', use_bias = False)(x)
            x = InstanceNormalization(axis = -1)(x)
            x = ReLU()(x)
            curr_dim = curr_dim * 2
        
        # Bottleneck layers.
        for i in range(self.g_repeat_num):
            x = self.ResidualBlock(x, curr_dim)
        
        # Up-sampling layers
        for i in range(2):
            x = UpSampling2D(size = 2)(x)       
            x = Conv2D(filters = curr_dim // 2, kernel_size = 4, strides = 1, padding = 'same', use_bias = False)(x)
            x = InstanceNormalization(axis = -1)(x)
            x = ReLU()(x)        
            curr_dim = curr_dim // 2
    
        # Last Conv2D
        x = ZeroPadding2D(padding = 3)(x)
        out = Conv2D(filters = 3, kernel_size = 7, strides = 1, padding = 'valid', activation = 'tanh', use_bias = False)(x)
    
        return Model(inputs = [inp_img, inp_c], outputs = out) 
開發者ID:hoangthang1607,項目名稱:StarGAN-Keras,代碼行數:44,代碼來源:StarGAN.py

示例15: build_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import repeat [as 別名]
def build_model(self, input_shape):
        
        input_dim = input_shape[-1]
        output_dim = self.output_dim
        input_length = input_shape[1]
        hidden_dim = self.hidden_dim

        x = Input(batch_shape=input_shape)
        h_tm1 = Input(batch_shape=(input_shape[0], hidden_dim))
        c_tm1 = Input(batch_shape=(input_shape[0], hidden_dim))
        
        W1 = Dense(hidden_dim * 4,
                   kernel_initializer=self.kernel_initializer,
                   kernel_regularizer=self.kernel_regularizer)
        W2 = Dense(output_dim,
                   kernel_initializer=self.kernel_initializer,
                   kernel_regularizer=self.kernel_regularizer)
        W3 = Dense(1,
                   kernel_initializer=self.kernel_initializer,
                   kernel_regularizer=self.kernel_regularizer)
        U = Dense(hidden_dim * 4,
                  kernel_initializer=self.kernel_initializer,
                  kernel_regularizer=self.kernel_regularizer)

        C = Lambda(lambda x: K.repeat(x, input_length), output_shape=(input_length, input_dim))(c_tm1)
        _xC = concatenate([x, C])
        _xC = Lambda(lambda x: K.reshape(x, (-1, input_dim + hidden_dim)), output_shape=(input_dim + hidden_dim,))(_xC)

        alpha = W3(_xC)
        alpha = Lambda(lambda x: K.reshape(x, (-1, input_length)), output_shape=(input_length,))(alpha)
        alpha = Activation('softmax')(alpha)

        _x = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=(1, 1)), output_shape=(input_dim,))([alpha, x])

        z = add([W1(_x), U(h_tm1)])

        z0, z1, z2, z3 = get_slices(z, 4)

        i = Activation(self.recurrent_activation)(z0)
        f = Activation(self.recurrent_activation)(z1)

        c = add([multiply([f, c_tm1]), multiply([i, Activation(self.activation)(z2)])])
        o = Activation(self.recurrent_activation)(z3)
        h = multiply([o, Activation(self.activation)(c)])
        y = Activation(self.activation)(W2(h))

        return Model([x, h_tm1, c_tm1], [y, h, c]) 
開發者ID:farizrahman4u,項目名稱:seq2seq,代碼行數:49,代碼來源:cells.py


注:本文中的keras.backend.repeat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。