本文整理匯總了Python中keras.backend.relu方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.relu方法的具體用法?Python backend.relu怎麽用?Python backend.relu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.relu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: labelembed_loss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def labelembed_loss(out1, out2, tar, targets, tau = 2., alpha = 0.9, beta = 0.5, num_classes = 100):
out2_prob = K.softmax(out2)
tau2_prob = K.stop_gradient(K.softmax(out2 / tau))
soft_tar = K.stop_gradient(K.softmax(tar))
L_o1_y = K.sparse_categorical_crossentropy(output = K.softmax(out1), target = targets)
pred = K.argmax(out2, axis = -1)
mask = K.stop_gradient(K.cast(K.equal(pred, K.cast(targets, 'int64')), K.floatx()))
L_o1_emb = -cross_entropy(out1, soft_tar) # pylint: disable=invalid-unary-operand-type
L_o2_y = K.sparse_categorical_crossentropy(output = out2_prob, target = targets)
L_emb_o2 = -cross_entropy(tar, tau2_prob) * mask * (K.cast(K.shape(mask)[0], K.floatx())/(K.sum(mask)+1e-8)) # pylint: disable=invalid-unary-operand-type
L_re = K.relu(K.sum(out2_prob * K.one_hot(K.cast(targets, 'int64'), num_classes), axis = -1) - alpha)
return beta * L_o1_y + (1-beta) * L_o1_emb + L_o2_y + L_emb_o2 + L_re
示例2: labelembed_model
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def labelembed_model(base_model, num_classes, **kwargs):
input_ = base_model.input
embedding = base_model.output
out = keras.layers.Activation('relu')(embedding)
out = keras.layers.BatchNormalization(name = 'embedding_bn')(out)
out1 = keras.layers.Dense(num_classes, name = 'prob')(out)
out2 = keras.layers.Dense(num_classes, name = 'out2')(keras.layers.Lambda(lambda x: K.stop_gradient(x))(out))
cls_input_ = keras.layers.Input((1,), name = 'labels')
cls_embedding_layer = keras.layers.Embedding(num_classes, num_classes, embeddings_initializer = 'identity', name = 'labelembeddings')
cls_embedding = keras.layers.Flatten()(cls_embedding_layer(cls_input_))
loss = keras.layers.Lambda(lambda x: labelembed_loss(x[0], x[1], x[2], K.flatten(x[3]), num_classes = num_classes, **kwargs)[:,None], name = 'labelembed_loss')([out1, out2, cls_embedding, cls_input_])
return keras.models.Model([input_, cls_input_], [embedding, out1, loss])
示例3: identity_block
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
filters1, filters2, filters3 = filters
if K.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Conv2D(filters2, kernel_size,
padding='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = Activation('relu')(x)
return x
示例4: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def call(self, x, mask=None):
# ensure the the right part is always to the right of the left
t_right_actual = self.t_left + K.abs(self.t_right)
if K.backend() == 'theano':
t_left = K.pattern_broadcast(self.t_left, self.param_broadcast)
a_left = K.pattern_broadcast(self.a_left, self.param_broadcast)
a_right = K.pattern_broadcast(self.a_right, self.param_broadcast)
t_right_actual = K.pattern_broadcast(t_right_actual,
self.param_broadcast)
else:
t_left = self.t_left
a_left = self.a_left
a_right = self.a_right
y_left_and_center = t_left + K.relu(x - t_left,
a_left,
t_right_actual - t_left)
y_right = K.relu(x - t_right_actual) * a_right
return y_left_and_center + y_right
示例5: model
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def model(hidden_dim=512, input_dim=28*28, sigma_regularization=1e-3, mu_regularization=1e-5, k=10,
activation = lambda x: K.relu(x, 1.0 / 5.5)):
"""Create two layer MLP with softmax output"""
_x = Input(shape=(input_dim,))
layer = lambda output_dim, activation: BayesianDense(output_dim,
activation=activation,
W_sigma_regularizer=VariationalRegularizer(weight=sigma_regularization),
b_sigma_regularizer=VariationalRegularizer(weight=sigma_regularization),
W_regularizer=WeightRegularizer(l1=mu_regularization))
h1 = layer(hidden_dim, activation)
h2 = layer(hidden_dim, activation)
y = layer(k, 'softmax')
_y = y(h2(h1(_x)))
m = Model(_x, _y)
m.compile(Adam(1e-3),loss='categorical_crossentropy')
return m
示例6: _squeeze
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def _squeeze(self, inputs):
"""Squeeze and Excitation.
This function defines a squeeze structure.
# Arguments
inputs: Tensor, input tensor of conv layer.
"""
input_channels = int(inputs.shape[-1])
x = GlobalAveragePooling2D()(inputs)
x = Dense(input_channels, activation='relu')(x)
x = Dense(input_channels, activation='hard_sigmoid')(x)
x = Reshape((1, 1, input_channels))(x)
x = Multiply()([inputs, x])
return x
示例7: triplet_loss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def triplet_loss(X):
# https://arxiv.org/pdf/1804.07275v1.pdf
# Eq (1)
features = K.int_shape(X)[-1] // 3
p1, p2, n1 = X[...,:features], X[...,features:2*features], X[...,2*features:]
d_p1_p2 = K.sum(K.square(p1 - p2), axis=-1, keepdims=True)
d_p1_n1 = K.sum(K.square(p1 - n1), axis=-1, keepdims=True)
d_p2_n1 = K.sum(K.square(p2 - n1), axis=-1, keepdims=True)
m = 2.
loss = K.relu(m + d_p1_p2 - d_p1_n1 ) + K.relu(m + d_p1_p2 - d_p2_n1)
# Eq (3,4) note: lambda trade-off param confirmed to be 1e-3 by the paper authors (by email)
loss += 1e-3 * ( \
K.sum(K.square(p1), axis=-1, keepdims=True) + \
K.sum(K.square(p2), axis=-1, keepdims=True) + \
K.sum(K.square(n1), axis=-1, keepdims=True))
return loss
示例8: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def call(self, inputs):
if self.data_format == 'channels_first':
sq = K.mean(inputs, [2, 3])
else:
sq = K.mean(inputs, [1, 2])
ex = K.dot(sq, self.kernel1)
if self.use_bias:
ex = K.bias_add(ex, self.bias1)
ex= K.relu(ex)
ex = K.dot(ex, self.kernel2)
if self.use_bias:
ex = K.bias_add(ex, self.bias2)
ex= K.sigmoid(ex)
if self.data_format == 'channels_first':
ex = K.expand_dims(ex, -1)
ex = K.expand_dims(ex, -1)
else:
ex = K.expand_dims(ex, 1)
ex = K.expand_dims(ex, 1)
return inputs * ex
示例9: model_generator
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def model_generator():
nch = 256
g_input = Input(shape=[100])
H = Dense(nch * 14 * 14)(g_input)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = dim_ordering_reshape(nch, 14)(H)
H = UpSampling2D(size=(2, 2))(H)
H = Convolution2D(int(nch / 2), 3, 3, border_mode='same')(H)
H = BatchNormalization(mode=2, axis=1)(H)
H = Activation('relu')(H)
H = Convolution2D(int(nch / 4), 3, 3, border_mode='same')(H)
H = BatchNormalization(mode=2, axis=1)(H)
H = Activation('relu')(H)
H = Convolution2D(1, 1, 1, border_mode='same')(H)
g_V = Activation('sigmoid')(H)
return Model(g_input, g_V)
示例10: model_discriminator
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def model_discriminator(input_shape=(1, 28, 28), dropout_rate=0.5):
d_input = dim_ordering_input(input_shape, name="input_x")
nch = 512
# nch = 128
H = Convolution2D(int(nch / 2), 5, 5, subsample=(2, 2), border_mode='same', activation='relu')(d_input)
H = LeakyReLU(0.2)(H)
H = Dropout(dropout_rate)(H)
H = Convolution2D(nch, 5, 5, subsample=(2, 2), border_mode='same', activation='relu')(H)
H = LeakyReLU(0.2)(H)
H = Dropout(dropout_rate)(H)
H = Flatten()(H)
H = Dense(int(nch / 2))(H)
H = LeakyReLU(0.2)(H)
H = Dropout(dropout_rate)(H)
d_V = Dense(1, activation='sigmoid')(H)
return Model(d_input, d_V)
示例11: compile
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def compile(self, optimizer, **kwargs):
qa_model = self.get_qa_model()
good_similarity = qa_model([self.question, self.answer_good])
bad_similarity = qa_model([self.question, self.answer_bad])
# loss = merge([good_similarity, bad_similarity],
# mode=lambda x: K.relu(self.config['margin'] - x[0] + x[1]),
# output_shape=lambda x: x[0])
loss = Lambda(lambda x: K.relu(self.config['margin'] - x[0] + x[1]),
output_shape=lambda x: x[0])([good_similarity, bad_similarity])
self.prediction_model = Model(inputs=[self.question, self.answer_good], outputs=good_similarity,
name='prediction_model')
self.prediction_model.compile(loss=lambda y_true, y_pred: y_pred, optimizer=optimizer, **kwargs)
self.training_model = Model(inputs=[self.question, self.answer_good, self.answer_bad], outputs=loss,
name='training_model')
self.training_model.compile(loss=lambda y_true, y_pred: y_pred, optimizer=optimizer, **kwargs)
示例12: reactionrnn_model
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def reactionrnn_model(weights_path, num_classes, maxlen=140):
'''
Builds the model architecture for textgenrnn and
loads the pretrained weights for the model.
'''
input = Input(shape=(maxlen,), name='input')
embedded = Embedding(num_classes, 100, input_length=maxlen,
name='embedding')(input)
rnn = GRU(256, return_sequences=False, name='rnn')(embedded)
output = Dense(5, name='output',
activation=lambda x: K.relu(x) / K.sum(K.relu(x),
axis=-1))(rnn)
model = Model(inputs=[input], outputs=[output])
model.load_weights(weights_path, by_name=True)
model.compile(loss='mse', optimizer='nadam')
return model
示例13: relu6
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def relu6(x):
return K.relu(x, max_value=6)
示例14: relu6
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def relu6(x):
return K.relu(x, max_value=6)
示例15: skewed_absolute_error
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import relu [as 別名]
def skewed_absolute_error(y_true, y_pred, tau):
"""
The quantile loss function for a given quantile tau:
L(y_true, y_pred) = (tau - I(y_pred < y_true)) * (y_pred - y_true)
Where I is the indicator function.
"""
dy = y_pred - y_true
return K.mean((1.0 - tau) * K.relu(dy) + tau * K.relu(-dy), axis=-1)