本文整理匯總了Python中keras.backend.random_uniform方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.random_uniform方法的具體用法?Python backend.random_uniform怎麽用?Python backend.random_uniform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.random_uniform方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: loss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def loss(self, y_true, y_pred):
# get the value for the true and fake images
disc_true = self.disc(y_true)
disc_pred = self.disc(y_pred)
# sample a x_hat by sampling along the line between true and pred
# z = tf.placeholder(tf.float32, shape=[None, 1])
# shp = y_true.get_shape()[0]
# WARNING: SHOULD REALLY BE shape=[batch_size, 1] !!!
# self.batch_size does not work, since it's not None!!!
alpha = K.random_uniform(shape=[K.shape(y_pred)[0], 1, 1, 1])
diff = y_pred - y_true
interp = y_true + alpha * diff
# take gradient of D(x_hat)
gradients = K.gradients(self.disc(interp), [interp])[0]
grad_pen = K.mean(K.square(K.sqrt(K.sum(K.square(gradients), axis=1))-1))
# compute loss
return (K.mean(disc_pred) - K.mean(disc_true)) + self.lambda_gp * grad_pen
示例2: softmax_activation
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def softmax_activation(self, mem):
"""Softmax activation."""
# spiking_samples = k.less_equal(k.random_uniform([self.config.getint(
# 'simulation', 'batch_size'), 1]), 300 * self.dt / 1000.)
# spiking_neurons = k.T.repeat(spiking_samples, 10, axis=1)
# activ = k.T.nnet.softmax(mem)
# max_activ = k.max(activ, axis=1, keepdims=True)
# output_spikes = k.equal(activ, max_activ).astype(k.floatx())
# output_spikes = k.T.set_subtensor(output_spikes[k.equal(
# spiking_neurons, 0).nonzero()], 0.)
# new_and_reset_mem = k.T.set_subtensor(mem[spiking_neurons.nonzero()],
# 0.)
# self.add_update([(self.mem, new_and_reset_mem)])
# return output_spikes
return k.T.mul(k.less_equal(k.random_uniform(mem.shape),
k.softmax(mem)), self.v_thresh)
示例3: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def call(self, x, mask=None):
sims = []
for n, sim in zip(self.n, self.similarities):
for _ in range(n):
batch_size = K.shape(x)[0]
idx = K.random_uniform((batch_size,), low=0, high=batch_size,
dtype='int32')
x_shuffled = K.gather(x, idx)
pair_sim = sim(x, x_shuffled)
for _ in range(K.ndim(x) - 1):
pair_sim = K.expand_dims(pair_sim, dim=1)
sims.append(pair_sim)
return K.concatenate(sims, axis=-1)
示例4: _merge_function
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def _merge_function(self, inputs):
alpha = K.random_uniform((32, 1, 1, 1))
return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
示例5: __call__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def __call__(self, shape, dtype=None):
dtype = dtype or K.floatx()
init_range = 1.0 / np.sqrt(shape[1])
return K.random_uniform(shape, -init_range, init_range, dtype=dtype)
# Obtained from https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
示例6: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def call(self, inputs, training=None):
def drop_connect():
keep_prob = 1.0 - self.drop_connect_rate
# Compute drop_connect tensor
batch_size = tf.shape(inputs)[0]
random_tensor = keep_prob
random_tensor += K.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype)
binary_tensor = tf.floor(random_tensor)
output = (inputs / keep_prob) * binary_tensor
return output
return K.in_train_phase(drop_connect, inputs, training=training)
示例7: _merge_function
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def _merge_function(self, inputs):
alpha = K.random_uniform((self.bs, 1, 1, 1))
return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
示例8: _merge_function
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def _merge_function (self, inputs):
weights = K.random_uniform((BATCH_SIZE, 1, 1))
return (weights * inputs[0]) + ((1 - weights) * inputs[1])
示例9: _merge_function
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def _merge_function(self, inputs):
weights = K.random_uniform((BATCH_SIZE, 1, 1, 1))
return (weights * inputs[0]) + ((1 - weights) * inputs[1])
示例10: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def call(self, inputs, training=None):
def dropped_inputs():
keep_prob = 1. - self.rate
tile_shape = tf.expand_dims(tf.shape(inputs)[-1], axis=0)
tiled_keep_prob = K.tile(keep_prob, tile_shape)
keep_prob = tf.transpose(K.reshape(tiled_keep_prob, [tile_shape[0], tf.shape(keep_prob)[0]]))
binary_tensor = tf.floor(keep_prob + K.random_uniform(shape=tf.shape(inputs)))
return inputs * binary_tensor
return K.in_train_phase(dropped_inputs, inputs,
training=training)
示例11: _merge_function
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def _merge_function(self, inputs):
weights = K.random_uniform((1, 1, 1, 1))
return (weights * inputs[0]) + ((1 - weights) * inputs[1])
示例12: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def __init__(self,mode='mul', strength=0.4, axes=(0,3), normalize=False,**kwargs):
super(GDropLayer,self).__init__(**kwargs)
assert mode in ('drop', 'mul', 'prop')
#self.random = K.random_uniform(1, minval=1, maxval=2147462579, dtype=tf.float32, seed=None, name=None)
self.mode = mode
self.strength = strength
self.axes = [axes] if isinstance(axes, int) else list(axes)
self.normalize = normalize # If true, retain overall signal variance.
self.gain = None # For experimentation.
示例13: uniform_latent_sampling
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def uniform_latent_sampling(latent_shape, low=0.0, high=1.0):
"""
Sample from uniform distribution
:param latent_shape: batch shape
:return: normal samples, shape=(n,)+latent_shape
"""
return Lambda(lambda x: K.random_uniform((K.shape(x)[0],) + latent_shape, low, high),
output_shape=lambda x: ((x[0],) + latent_shape))
示例14: _dense_kernel_initializer
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def _dense_kernel_initializer(shape, dtype=None):
fan_in, fan_out = _compute_fans(shape)
stddev = 1. / np.sqrt(fan_in)
return K.random_uniform(shape, -stddev, stddev, dtype)
示例15: random_laplace
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import random_uniform [as 別名]
def random_laplace(shape, mu=0., b=1.):
'''
Draw random samples from a Laplace distriubtion.
See: https://en.wikipedia.org/wiki/Laplace_distribution#Generating_random_variables_according_to_the_Laplace_distribution
'''
U = K.random_uniform(shape, -0.5, 0.5)
return mu - b * K.sign(U) * K.log(1 - 2 * K.abs(U))