當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.prod方法代碼示例

本文整理匯總了Python中keras.backend.prod方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.prod方法的具體用法?Python backend.prod怎麽用?Python backend.prod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.prod方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_output

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def get_output(self, train=False):
        def format_shape(shape):
            if K._BACKEND == 'tensorflow':
                def trf(x):
                    try:
                        return int(x)
                    except TypeError:
                        return x

                return map(trf, shape)
            return shape

        X = self.get_input(train)

        in_shape = format_shape(K.shape(X))
        batch_flatten_len = K.prod(in_shape[:2])
        cast_in_shape = (batch_flatten_len, ) + tuple(in_shape[i] for i in range(2, K.ndim(X)))
        
        pre_outs = self.layer(K.reshape(X, cast_in_shape))
        
        out_shape = format_shape(K.shape(pre_outs))
        cast_out_shape = (in_shape[0], in_shape[1]) + tuple(out_shape[i] for i in range(1, K.ndim(pre_outs)))
        
        outputs = K.reshape(pre_outs, cast_out_shape)
        return outputs 
開發者ID:textclf,項目名稱:fancy-cnn,代碼行數:27,代碼來源:timedistributed.py

示例2: tf_normal

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def tf_normal(y_true, mu, sigma, pi):

    rollout_length = K.shape(y_true)[1]
    y_true = K.tile(y_true,(1,1,GAUSSIAN_MIXTURES))
    y_true = K.reshape(y_true, [-1, rollout_length, GAUSSIAN_MIXTURES,Z_DIM])

    oneDivSqrtTwoPI = 1 / math.sqrt(2*math.pi)
    result = y_true - mu
#   result = K.permute_dimensions(result, [2,1,0])
    result = result * (1 / (sigma + 1e-8))
    result = -K.square(result)/2
    result = K.exp(result) * (1/(sigma + 1e-8))*oneDivSqrtTwoPI
    result = result * pi
    result = K.sum(result, axis=2) #### sum over gaussians
    #result = K.prod(result, axis=2) #### multiply over latent dims
    return result 
開發者ID:llSourcell,項目名稱:world_models,代碼行數:18,代碼來源:arch.py

示例3: inst_weight

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def inst_weight(output_y, output_x, output_dr, output_dl, config=None):
    dy = output_y[:,2:,2:]-output_y[:, :-2,2:] + \
         2*(output_y[:,2:,1:-1]- output_y[:,:-2,1:-1]) + \
         output_y[:,2:,:-2]-output_y[:,:-2,:-2]
    dx = output_x[:,2:,2:]- output_x[:,2:,:-2] + \
         2*( output_x[:,1:-1,2:]- output_x[:,1:-1,:-2]) +\
         output_x[:,:-2,2:]- output_x[:,:-2,:-2]
    ddr=  (output_dr[:,2:,2:]-output_dr[:,:-2,:-2] +\
           output_dr[:,1:-1,2:]-output_dr[:,:-2,1:-1]+\
           output_dr[:,2:,1:-1]-output_dr[:,1:-1,:-2])*K.constant(2)
    ddl=  (output_dl[:,2:,:-2]-output_dl[:,:-2,2:] +\
           output_dl[:,2:,1:-1]-output_dl[:,1:-1,2:]+\
           output_dl[:,1:-1,:-2]-output_dl[:,:-2,1:-1])*K.constant(2)
    dpred = K.concatenate([dy,dx,ddr,ddl],axis=-1)
    dpred = K.spatial_2d_padding(dpred)
    weight_fg = K.cast(K.all(dpred>K.constant(config.GRADIENT_THRES), axis=3, 
                          keepdims=True), K.floatx())
    
    weight = K.clip(K.sqrt(weight_fg*K.prod(dpred, axis=3, keepdims=True)), 
                    config.WEIGHT_AREA/config.CLIP_AREA_HIGH, 
                    config.WEIGHT_AREA/config.CLIP_AREA_LOW)
    weight +=(1-weight_fg)*config.WEIGHT_AREA/config.BG_AREA
    weight = K.conv2d(weight, K.constant(config.GAUSSIAN_KERNEL),
                      padding='same')
    return K.stop_gradient(weight) 
開發者ID:jacobkie,項目名稱:2018DSB,代碼行數:27,代碼來源:model.py

示例4: get_iou

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def get_iou(bbox_base, bbox_target):
    """2つのBoundingBoxのIoU(Intersection Over Union)を取得する。
        https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
    Args:
        bbox_base (ndarray): 基準になるBoudingBox。
            Its shape is :math:`(N, 4)`.
            2軸目に以下の順でBBoxの座標を保持する。
            :math:`p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}`.
        bbox_target (ndarray): BoudingBox。
            Its shape is :math:`(K, 4)`.
            2軸目に以下の順でBBoxの座標を保持する。
            :math:`p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}`.

        bbox_baseの各Box毎にbbox_targetを適用し、IoUを求める。

    Returns:
        ndarray:
        IoU(0 <= IoU <= 1)
        形狀は以下の通り。
        :math:`(N, K)`.

    """
    if bbox_base.shape[1] != 4 or bbox_target.shape[1] != 4:
        raise IndexError

    # 交差領域の左上の座標
    # bbox_base[:, None, :]のより次元を増やすことで、
    # bbox_baseとbbox_targetを総當りで評価出來る。
    # (N, K, 2)の座標が得られる
    tl = np.maximum(bbox_base[:, None, :2], bbox_target[:, :2])
    # 交差領域の右下の座標
    # (N, K, 2)の座標が得られる
    br = np.minimum(bbox_base[:, None, 2:], bbox_target[:, 2:])

    # 右下-左下=交差領域の(h, w)が得られる。
    # h*wで交差領域の麵積。ただし、交差領域がない(右下 <= 左上)ものは除くため0とする。
    area_i = np.prod(br - tl, axis=2) * \
        np.all(br > tl, axis=2).astype('float32')
    area_base = np.prod(bbox_base[:, 2:] - bbox_base[:, :2], axis=1)
    area_target = np.prod(bbox_target[:, 2:] - bbox_target[:, :2], axis=1)
    return area_i / (area_base[:, None] + area_target - area_i) 
開發者ID:shtamura,項目名稱:maskrcnn,代碼行數:43,代碼來源:bbox.py

示例5: get_iou_K

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def get_iou_K(bbox_base, bbox_target):
    """2つのBoundingBoxのIoU(Intersection Over Union)を取得する。
        https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
    Args:
        bbox_base (tensor): 基準になるBoudingBox。
            Its shape is :math:`(N, 4)`.
            2軸目に以下の順でBBoxの座標を保持する。
            :math:`p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}`.
        bbox_target (tensor): BoudingBox。
            Its shape is :math:`(K, 4)`.
            2軸目に以下の順でBBoxの座標を保持する。
            :math:`p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}`.

        bbox_baseの各Box毎にbbox_targetを適用し、IoUを求める。

    Returns:
        tensor:
        IoU(0 <= IoU <= 1)
        形狀は以下の通り。
        :math:`(N, K)`.

    """
    if bbox_base.shape[1] != 4 or bbox_target.shape[1] != 4:
        raise IndexError

    # 交差領域の左上の座標
    # bbox_base[:, None, :]のより次元を増やすことで、
    # bbox_baseとbbox_targetを総當りで評価出來る。
    # (N, K, 2)の座標が得られる
    tl = K.maximum(bbox_base[:, None, :2], bbox_target[:, :2])
    # 交差領域の右下の座標
    # (N, K, 2)の座標が得られる
    br = K.minimum(bbox_base[:, None, 2:], bbox_target[:, 2:])

    # 右下-左下=交差領域の(h, w)が得られる。
    # h*wで交差領域の麵積。ただし、交差領域がない(右下 <= 左上)ものは除くため0とする。
    area_i = K.prod(br - tl, axis=2) * \
        K.cast(K.all(br > tl, axis=2), 'float32')
    area_base = K.prod(bbox_base[:, 2:] - bbox_base[:, :2], axis=1)
    area_target = K.prod(bbox_target[:, 2:] - bbox_target[:, :2], axis=1)
    return area_i / (area_base[:, None] + area_target - area_i) 
開發者ID:shtamura,項目名稱:maskrcnn,代碼行數:43,代碼來源:bbox.py

示例6: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def call(self, inputs, mask=None):
        # shape: (batch size, ..., num_probs, ...)
        probabilities = inputs
        if mask is not None:
            probabilities *= K.cast(mask, "float32")

        noisy_probs = self.noise_parameter * probabilities

        # shape: (batch size, ..., num_probs, ...)
        noisy_probs = 1.0 - noisy_probs

        # shape: (batch size, ..., ...)
        probability_product = K.prod(noisy_probs, axis=self.axis)

        return 1.0 - probability_product 
開發者ID:allenai,項目名稱:deep_qa,代碼行數:17,代碼來源:noisy_or.py

示例7: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def call(self, x, mask=None):
        # theano.scan doesn't seem to work when intermediate results' changes in shape -- Alexander
        res = x
        # core_arr_idx = 0 # oroginal implementation, removed
        for k in range(self.num_dim - 1, -1, -1):
            """
            These are the original codes by Alexander, which calculate the shapes ad-hoc.
            Feel free to switch these codes on if one is interested in comparing performances.
            At least I only observe very small differences.
            # res is of size o_k+1 x ... x o_d x batch_size x i_1 x ... x i_k-1 x i_k x r_k+1
            curr_shape = (self.tt_input_shape[k] * self.tt_ranks[k + 1], self.tt_ranks[k] * self.tt_output_shape[k])
            curr_core = self.W[core_arr_idx:core_arr_idx+K.prod(curr_shape)].reshape(curr_shape)
            res = K.dot(res.reshape((-1, curr_shape[0])), curr_core)
            # res is of size o_k+1 x ... x o_d x batch_size x i_1 x ... x i_k-1 x r_k x o_k
            res = K.transpose(res.reshape((-1, self.tt_output_shape[k])))
            # res is of size o_k x o_k+1 x ... x o_d x batch_size x i_1 x ... x i_k-1 x r_k
            core_arr_idx += K.prod(curr_shape)
            """
            # New one, in order to avoid calculating the indices in every iteration
            res = K.dot(K.reshape(res, (-1, self.shapes[k][0])),  # of shape (-1, m_k*r_{k+1})
                        K.reshape(self.cores[k], self.shapes[k])  # of shape (m_k*r_{k+1}, r_k*n_k)
                        )
            res = K.transpose(
                K.reshape(res, (-1, self.tt_output_shape[k]))
            )

        # res is of size o_1 x ... x o_d x batch_size # by Alexander
        res = K.transpose(K.reshape(res, (-1, K.shape(x)[0])))

        if self.use_bias:
            res = K.bias_add(res, self.bias)
        if self.activation is not None:
            res =self.activation(res)

        return res 
開發者ID:Tuyki,項目名稱:TT_RNN,代碼行數:37,代碼來源:TTLayer.py

示例8: get_output_shape_for

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def get_output_shape_for(self, input_shape):
        return (input_shape[0], np.prod(self.tt_output_shape)) 
開發者ID:Tuyki,項目名稱:TT_RNN,代碼行數:4,代碼來源:TTLayer.py

示例9: compute_output_shape

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def compute_output_shape(self, input_shape):
        # assert input_shape and len(input_shape) >= 2
        # assert input_shape[-1]
        # output_shape = list(input_shape)
        # output_shape[-1] = self.units
        return (input_shape[0], np.prod(self.tt_output_shape)) 
開發者ID:Tuyki,項目名稱:TT_RNN,代碼行數:8,代碼來源:TTLayer.py

示例10: ncc

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def ncc(self, I, J):
        # get dimension of volume
        # assumes I, J are sized [batch_size, *vol_shape, nb_feats]
        ndims = len(I.get_shape().as_list()) - 2
        assert ndims in [1, 2, 3], "volumes should be 1 to 3 dimensions. found: %d" % ndims

        # set window size
        if self.win is None:
            self.win = [9] * ndims

        # get convolution function
        conv_fn = getattr(tf.nn, 'conv%dd' % ndims)

        # compute CC squares
        I2 = I*I
        J2 = J*J
        IJ = I*J

        # compute filters
        sum_filt = tf.ones([*self.win, 1, 1])
        strides = 1
        if ndims > 1:
            strides = [1] * (ndims + 2)
        padding = 'SAME'

        # compute local sums via convolution
        I_sum = conv_fn(I, sum_filt, strides, padding)
        J_sum = conv_fn(J, sum_filt, strides, padding)
        I2_sum = conv_fn(I2, sum_filt, strides, padding)
        J2_sum = conv_fn(J2, sum_filt, strides, padding)
        IJ_sum = conv_fn(IJ, sum_filt, strides, padding)

        # compute cross correlation
        win_size = np.prod(self.win)
        u_I = I_sum/win_size
        u_J = J_sum/win_size

        cross = IJ_sum - u_J*I_sum - u_I*J_sum + u_I*u_J*win_size
        I_var = I2_sum - 2 * u_I * I_sum + u_I*u_I*win_size
        J_var = J2_sum - 2 * u_J * J_sum + u_J*u_J*win_size

        cc = cross*cross / (I_var*J_var + self.eps)

        # return negative cc.
        return tf.reduce_mean(cc) 
開發者ID:voxelmorph,項目名稱:voxelmorph,代碼行數:47,代碼來源:losses.py

示例11: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def call(self, x, mask=None):
        N_DECISION = (2 ** (self.n_depth)) - 1  # Number of decision nodes
        N_LEAF  = 2 ** (self.n_depth + 1)  # Number of leaf nodes

        flat_decision_p_e = []
        leaf_p_e = []
        for w_d, w_l in zip(self.w_d_ensemble, self.w_l_ensemble):

            decision_p = K.sigmoid((K.dot(x, w_d)))
            leaf_p = K.softmax(w_l)

            decision_p_comp = 1 - decision_p

            decision_p_pack = K.concatenate([decision_p, decision_p_comp])

            flat_decision_p_e.append(decision_p_pack)
            leaf_p_e.append(leaf_p)

        #Construct tiling pattern for decision probability matrix
        #Could be done in TF, but I think it's better statically
        tiling_pattern = np.zeros((N_LEAF, self.n_depth), dtype=np.int32)
        comp_offset = N_DECISION
        dec_idx = 0
        for n in xrange(self.n_depth):
            j = 0
            for depth_idx in xrange(2**n):
                repeat_times = 2 ** (self.n_depth - n)
                for _ in xrange(repeat_times):
                    tiling_pattern[j][n] = dec_idx 
                    j = j + 1

                for _ in xrange(repeat_times):
                    tiling_pattern[j][n] = comp_offset + dec_idx 
                    j = j + 1

                dec_idx = dec_idx + 1

        flat_pattern = tiling_pattern.flatten()

        # iterate over each tree
        tree_ret = None
        for flat_decision_p, leaf_p in zip(flat_decision_p_e, leaf_p_e):
            flat_mu = tf.transpose(tf.gather(tf.transpose(flat_decision_p), flat_pattern))
            
            batch_size = tf.shape(flat_decision_p)[0]
            shape = tf.pack([batch_size, N_LEAF, self.n_depth])

            mu = K.reshape(flat_mu, shape)
            leaf_prob = K.prod(mu, [2])
            prob_label = K.dot(leaf_prob, leaf_p)

            if tree_ret is None:
              tree_ret = prob_label
            else:
              tree_ret = tree_ret + prob_label

        return tree_ret/self.n_trees 
開發者ID:kuza55,項目名稱:keras-extras,代碼行數:59,代碼來源:DiffForest.py

示例12: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def call(self, x, mask=None):
		input_vector = x[0]
		target_classes = x[1]
		nb_req_classes = self.input_spec[1].shape[1]
		if nb_req_classes is None:
			nb_req_classes = K.shape(target_classes)
		if K.dtype(target_classes) != 'int32':
			target_classes = K.cast(target_classes, 'int32')
		if self.mode == 0:
			# One giant matrix mul
			input_dim = self.input_spec[0].shape[1]
			nb_req_classes = self.input_spec[1].shape[1]
			path_lengths = map(len, self.paths)
			huffman_codes = K.variable(np.array(self.huffman_codes))
			req_nodes = K.gather(self.class_path_map, target_classes)
			req_W = K.gather(self.W, req_nodes)
			y = K.batch_dot(input_vector, req_W, axes=(1, 3))
			if self.bias:
				req_b = K.gather(self.b, req_nodes)
				y += req_b
			y = K.sigmoid(y[:, :, :, 0])
			req_huffman_codes = K.gather(huffman_codes, target_classes)
			return K.prod(req_huffman_codes + y - 2 * req_huffman_codes * y, axis=-1)  # Thug life
		elif self.mode == 1:
			# Many tiny matrix muls
			probs = []
			for i in range(len(self.paths)):
				huffman_code = self.huffman_codes[i]
				path = self.paths[i]
				prob = 1.
				for j in range(len(path)):
					node = path[j]
					node_index = self.node_indices[node]
					p = K.dot(input_vector, self.W[node_index, :, :])[:, 0]
					if self.bias:
						p += self.b[node_index, :][0]
					h = huffman_code[j]
					p = K.sigmoid(p)
					prob *= h + p - 2 * p * h
				probs += [prob]
			probs = K.pack(probs)
			req_probs = K.gather(probs, target_classes)
			req_probs = K.permute_dimensions(req_probs, (0, 2, 1))
			req_probs = K.reshape(req_probs, (-1, nb_req_classes))
			batch_size = K.shape(input_vector)[0]
			indices = arange(batch_size * batch_size, batch_size + 1)
			req_probs = K.gather(req_probs, indices)
			return req_probs 
開發者ID:farizrahman4u,項目名稱:huffmax,代碼行數:50,代碼來源:huffmax.py

示例13: init_orthogonal_tt_cores

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def init_orthogonal_tt_cores(tt_input_shape, tt_output_shape, tt_ranks):
    tt_input_shape = np.array(tt_input_shape)
    tt_output_shape = np.array(tt_output_shape)
    tt_ranks = np.array(tt_ranks)
    cores_arr_len = np.sum(tt_input_shape * tt_output_shape *
                           tt_ranks[1:] * tt_ranks[:-1])
    cores_arr = np.zeros(cores_arr_len)
    rv = 1

    d = tt_input_shape.shape[0]
    rng = np.random
    shapes = [None] * d
    tall_shapes = [None] * d
    cores = [None] * d
    counter = 0

    for k in range(tt_input_shape.shape[0]):
        # Original implementation
        # shape = [ranks[k], input_shape[k], output_shape[k], ranks[k+1]]
        shapes[k] = [tt_ranks[k], tt_input_shape[k], tt_output_shape[k], tt_ranks[k + 1]]

        # Original implementation
        # tall_shape = (np.prod(shape[:3]), shape[3])
        tall_shapes[k] = (np.prod(shapes[k][:3]), shapes[k][3])

        # Original implementation
        # curr_core = np.dot(rv, np.random.randn(shape[0], np.prod(shape[1:])) )
        cores[k] = np.dot(rv, rng.randn(shapes[k][0], np.prod(shapes[k][1:])))

        # Original implementation
        # curr_core = curr_core.reshape(tall_shape)
        cores[k] = cores[k].reshape(tall_shapes[k])

        if k < tt_input_shape.shape[0] - 1:
            # Original implementation
            # curr_core, rv = np.linalg.qr(curr_core)
            cores[k], rv = np.linalg.qr(cores[k])
        # Original implementation
        # cores_arr[cores_arr_idx:cores_arr_idx+curr_core.size] = curr_core.flatten()
        # cores_arr_idx += curr_core.size
        cores_arr[counter:(counter + cores[k].size)] = cores[k].flatten()
        counter += cores[k].size

    glarot_style = (np.prod(tt_input_shape) * np.prod(tt_ranks)) ** (1.0 / tt_input_shape.shape[0])
    return (0.1 / glarot_style) * cores_arr 
開發者ID:Tuyki,項目名稱:TT_RNN,代碼行數:47,代碼來源:TTLayer.py

示例14: _generate_orthogonal_tt_cores

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import prod [as 別名]
def _generate_orthogonal_tt_cores(self):
        cores_arr_len = np.sum(self.tt_input_shape * self.tt_output_shape *
                               self.tt_ranks[1:] * self.tt_ranks[:-1])
        cores_arr = np.zeros(cores_arr_len)
        rv = 1

        d = self.tt_input_shape.shape[0]
        rng = np.random
        shapes = [None] * d
        tall_shapes = [None] * d
        cores = [None] * d
        counter = 0

        for k in range(self.tt_input_shape.shape[0]):
            # Original implementation
            # shape = [ranks[k], input_shape[k], output_shape[k], ranks[k+1]]
            shapes[k] = [self.tt_ranks[k], self.tt_input_shape[k], self.tt_output_shape[k], self.tt_ranks[k + 1]]

            # Original implementation
            # tall_shape = (np.prod(shape[:3]), shape[3])
            tall_shapes[k] = (np.prod(shapes[k][:3]), shapes[k][3])

            # Original implementation
            # curr_core = np.dot(rv, np.random.randn(shape[0], np.prod(shape[1:])) )
            cores[k] = np.dot(rv, rng.randn(shapes[k][0], np.prod(shapes[k][1:])))

            # Original implementation
            # curr_core = curr_core.reshape(tall_shape)
            cores[k] = cores[k].reshape(tall_shapes[k])

            if k < self.tt_input_shape.shape[0] - 1:
                # Original implementation
                # curr_core, rv = np.linalg.qr(curr_core)
                cores[k], rv = np.linalg.qr(cores[k])
            # Original implementation
            # cores_arr[cores_arr_idx:cores_arr_idx+curr_core.size] = curr_core.flatten()
            # cores_arr_idx += curr_core.size
            cores_arr[counter:(counter + cores[k].size)] = cores[k].flatten()
            counter += cores[k].size

        glarot_style = (np.prod(self.tt_input_shape) * np.prod(self.tt_ranks)) ** (1.0 / self.tt_input_shape.shape[0])
        return (0.1 / glarot_style) * cores_arr 
開發者ID:Tuyki,項目名稱:TT_RNN,代碼行數:44,代碼來源:TTLayer.py


注:本文中的keras.backend.prod方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。