當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.permute_dimensions方法代碼示例

本文整理匯總了Python中keras.backend.permute_dimensions方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.permute_dimensions方法的具體用法?Python backend.permute_dimensions怎麽用?Python backend.permute_dimensions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.permute_dimensions方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def call(self, x):
        mean = K.mean(x, axis=-1)
        std = K.std(x, axis=-1)

        if len(x.shape) == 3:
            mean = K.permute_dimensions(
                K.repeat(mean, x.shape.as_list()[-1]),
                [0,2,1]
            )
            std = K.permute_dimensions(
                K.repeat(std, x.shape.as_list()[-1]),
                [0,2,1] 
            )
            
        elif len(x.shape) == 2:
            mean = K.reshape(
                K.repeat_elements(mean, x.shape.as_list()[-1], 0),
                (-1, x.shape.as_list()[-1])
            )
            std = K.reshape(
                K.repeat_elements(mean, x.shape.as_list()[-1], 0),
                (-1, x.shape.as_list()[-1])
            )
        
        return self._g * (x - mean) / (std + self._epsilon) + self._b 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:27,代碼來源:layer_normalization.py

示例2: GenerateMCSamples

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def GenerateMCSamples(inp, layers, K_mc=20):
    if K_mc == 1:
        return apply_layers(inp, layers)
    output_list = []
    for _ in xrange(K_mc):
        output_list += [apply_layers(inp, layers)]  # THIS IS BAD!!! we create new dense layers at every call!!!!
    def pack_out(output_list):
        #output = K.pack(output_list) # K_mc x nb_batch x nb_classes
        output = K.stack(output_list) # K_mc x nb_batch x nb_classes
        return K.permute_dimensions(output, (1, 0, 2)) # nb_batch x K_mc x nb_classes
    def pack_shape(s):
        s = s[0]
        assert len(s) == 2
        return (s[0], K_mc, s[1])
    out = Lambda(pack_out, output_shape=pack_shape)(output_list)
    return out

# evaluation for classification tasks 
開發者ID:YingzhenLi,項目名稱:Dropout_BBalpha,代碼行數:20,代碼來源:BBalpha_dropout.py

示例3: crosschannelnormalization

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def crosschannelnormalization(alpha=1e-4, k=2, beta=0.75, n=5, **kwargs):
    """
    This is the function used for cross channel normalization in the original
    Alexnet
    """

    def f(X):
        b, ch, r, c = X.shape
        half = n // 2
        square = K.square(X)
        extra_channels = K.spatial_2d_padding(K.permute_dimensions(square, (0, 2, 3, 1))
                                              , (0, half))
        extra_channels = K.permute_dimensions(extra_channels, (0, 3, 1, 2))
        scale = k
        for i in range(n):
            scale += alpha * extra_channels[:, i:i + ch, :, :]
        scale = scale ** beta
        return X / scale

    return Lambda(f, output_shape=lambda input_shape: input_shape, **kwargs) 
開發者ID:heuritech,項目名稱:convnets-keras,代碼行數:22,代碼來源:customlayers.py

示例4: crosschannelnormalization

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def crosschannelnormalization(alpha = 1e-4, k=2, beta=0.75, n=5,**kwargs):
    """
    This is the function used for cross channel normalization in the original
    Alexnet
    """
    def f(X):
        b, ch, r, c = X.shape
        half = n // 2
        square = K.square(X)
        extra_channels = K.spatial_2d_padding(K.permute_dimensions(square, (0,2,3,1))
                                              , (0,half))
        extra_channels = K.permute_dimensions(extra_channels, (0,3,1,2))
        scale = k
        for i in range(n):
            scale += alpha * extra_channels[:,i:i+ch,:,:]
        scale = scale ** beta
        return X / scale

    return Lambda(f, output_shape=lambda input_shape:input_shape,**kwargs) 
開發者ID:wentaozhu,項目名稱:deep-mil-for-whole-mammogram-classification,代碼行數:21,代碼來源:customlayers.py

示例5: ifft2

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def ifft2(x):
	ff = x
	ff = KB.permute_dimensions(ff, (0, 2, 1))
	ff = KB.reshape(ff, (x.shape[0] *x.shape[2], x.shape[1]))
	tf = ifft(ff)
	tf = KB.reshape(tf, (x.shape[0], x.shape[2], x.shape[1]))
	tf = KB.permute_dimensions(tf, (0, 2, 1))
	tf = KB.reshape(tf, (x.shape[0] *x.shape[1], x.shape[2]))
	tt = ifft(tf)
	tt = KB.reshape(tt, (x.shape[0], x.shape[1], x.shape[2]))
	return tt

#
# FFT Layers:
#
#  FFT:   Batched 1-D FFT  (Input: (Batch, FeatureMaps, TimeSamples))
#  IFFT:  Batched 1-D IFFT (Input: (Batch, FeatureMaps, FreqSamples))
#  FFT2:  Batched 2-D FFT  (Input: (Batch, FeatureMaps, TimeSamplesH, TimeSamplesW))
#  IFFT2: Batched 2-D IFFT (Input: (Batch, FeatureMaps, FreqSamplesH, FreqSamplesW))
# 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:22,代碼來源:fft.py

示例6: tf_normal

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def tf_normal(y_true, mu, sigma, pi):

    rollout_length = K.shape(y_true)[1]
    y_true = K.tile(y_true,(1,1,GAUSSIAN_MIXTURES))
    y_true = K.reshape(y_true, [-1, rollout_length, GAUSSIAN_MIXTURES,Z_DIM])

    oneDivSqrtTwoPI = 1 / math.sqrt(2*math.pi)
    result = y_true - mu
#   result = K.permute_dimensions(result, [2,1,0])
    result = result * (1 / (sigma + 1e-8))
    result = -K.square(result)/2
    result = K.exp(result) * (1/(sigma + 1e-8))*oneDivSqrtTwoPI
    result = result * pi
    result = K.sum(result, axis=2) #### sum over gaussians
    #result = K.prod(result, axis=2) #### multiply over latent dims
    return result 
開發者ID:llSourcell,項目名稱:world_models,代碼行數:18,代碼來源:arch.py

示例7: _diffs

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def _diffs(self, y):
        vol_shape = y.get_shape().as_list()[1:-1]
        ndims = len(vol_shape)

        df = [None] * ndims
        for i in range(ndims):
            d = i + 1
            # permute dimensions to put the ith dimension first
            r = [d, *range(d), *range(d + 1, ndims + 2)]
            y = K.permute_dimensions(y, r)
            dfi = y[1:, ...] - y[:-1, ...]
            
            # permute back
            # note: this might not be necessary for this loss specifically,
            # since the results are just summed over anyway.
            r = [*range(1, d + 1), 0, *range(d + 1, ndims + 2)]
            df[i] = K.permute_dimensions(dfi, r)
        
        return df 
開發者ID:voxelmorph,項目名稱:voxelmorph,代碼行數:21,代碼來源:losses.py

示例8: prec_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def prec_loss(self, y_pred):
        """
        a more manual implementation of the precision matrix term
                mu * P * mu    where    P = D - A
        where D is the degree matrix and A is the adjacency matrix
                mu * P * mu = 0.5 * sum_i mu_i sum_j (mu_i - mu_j) = 0.5 * sum_i,j (mu_i - mu_j) ^ 2
        where j are neighbors of i

        Note: could probably do with a difference filter, 
        but the edges would be complicated unless tensorflow allowed for edge copying
        """
        vol_shape = y_pred.get_shape().as_list()[1:-1]
        ndims = len(vol_shape)
        
        sm = 0
        for i in range(ndims):
            d = i + 1
            # permute dimensions to put the ith dimension first
            r = [d, *range(d), *range(d + 1, ndims + 2)]
            y = K.permute_dimensions(y_pred, r)
            df = y[1:, ...] - y[:-1, ...]
            sm += K.mean(df * df)

        return 0.5 * sm / ndims 
開發者ID:voxelmorph,項目名稱:voxelmorph,代碼行數:26,代碼來源:losses.py

示例9: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def call(self, u_vecs):
        if self.share_weights:
            u_hat_vecs = K.conv1d(u_vecs, self.W)
        else:
            u_hat_vecs = K.local_conv1d(u_vecs, self.W, [1], [1])

        batch_size = K.shape(u_vecs)[0]
        input_num_capsule = K.shape(u_vecs)[1]
        u_hat_vecs = K.reshape(u_hat_vecs, (batch_size, input_num_capsule,
                                            self.num_capsule, self.dim_capsule))
        u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1, 3))

        b = K.zeros_like(u_hat_vecs[:, :, :, 0])  # shape = [None, num_capsule, input_num_capsule]
        for i in range(self.routings):
            b = K.permute_dimensions(b, (0, 2, 1))  # shape = [None, input_num_capsule, num_capsule]
            c = K.softmax(b)
            c = K.permute_dimensions(c, (0, 2, 1))
            b = K.permute_dimensions(b, (0, 2, 1))
            outputs = self.activation(K.batch_dot(c, u_hat_vecs, [2, 2]))
            if i < self.routings - 1:
                b = K.batch_dot(outputs, u_hat_vecs, [2, 3])

        return outputs 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:25,代碼來源:models.py

示例10: crosschannelnormalization

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def crosschannelnormalization(alpha = 1e-4, k=2, beta=0.75, n=5,**kwargs):
    """
    This is the function used for cross channel normalization in the original
    Alexnet
    """
    def f(X):
        b, ch, r, c = X.shape
        half = n // 2
        square = K.square(X)
        extra_channels = K.spatial_2d_padding(K.permute_dimensions(square, (0,2,3,1)))
        extra_channels = K.permute_dimensions(extra_channels, (0,3,1,2))
        scale = k
        for i in range(n):
            scale += alpha * extra_channels[:,i:i+ch,:,:]
        scale = scale ** beta
        return X / scale

    return Lambda(f, output_shape=lambda input_shape:input_shape,**kwargs) 
開發者ID:filonenkoa,項目名稱:cnn_evaluation_smoke,代碼行數:20,代碼來源:customlayers.py

示例11: _process_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def _process_input(self, x):
        """Apply logistic and softmax activations to input tensor
        """
        logistic_activate = lambda x: 1.0/(1.0 + K.exp(-x))
        
        (batch, w, h, channels) = x.get_shape()
        x_temp = K.permute_dimensions(x, (3, 0, 1, 2))
        x_t = []
        for i in range(self.num):
            k = self._entry_index(i, 0)
            x_t.extend([
                logistic_activate(K.gather(x_temp, (k, k + 1))), # 0
                K.gather(x_temp, (k + 2, k + 3))])
            if self.background:
                x_t.append(K.gather(x_temp, (k + 4,)))
            else:
                x_t.append(logistic_activate(K.gather(x_temp, (k + 4,))))
                
            x_t.append(
                softmax(
                    K.gather(x_temp, tuple(range(k + 5, k + self.coords + self.classes + 1))),
                    axis=0))
        x_t = K.concatenate(x_t, axis=0)
        return K.permute_dimensions(x_t, (1, 2, 3, 0)) 
開發者ID:BrainsGarden,項目名稱:keras-yolo,代碼行數:26,代碼來源:region.py

示例12: make_patches_grid

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def make_patches_grid(x, patch_size, patch_stride):
    '''Break image `x` up into a grid of patches.

    input shape: (channels, rows, cols)
    output shape: (rows, cols, channels, patch_rows, patch_cols)
    '''
    from theano.tensor.nnet.neighbours import images2neibs  # TODO: all K, no T
    x = K.expand_dims(x, 0)
    xs = K.shape(x)
    num_rows = 1 + (xs[-2] - patch_size) // patch_stride
    num_cols = 1 + (xs[-1] - patch_size) // patch_stride
    num_channels = xs[-3]
    patches = images2neibs(x,
        (patch_size, patch_size), (patch_stride, patch_stride),
        mode='valid')
    # neibs are sorted per-channel
    patches = K.reshape(patches, (num_channels, K.shape(patches)[0] // num_channels, patch_size, patch_size))
    patches = K.permute_dimensions(patches, (1, 0, 2, 3))
    # arrange in a 2d-grid (rows, cols, channels, px, py)
    patches = K.reshape(patches, (num_rows, num_cols, num_channels, patch_size, patch_size))
    patches_norm = K.sqrt(K.sum(K.square(patches), axis=(2,3,4), keepdims=True))
    return patches, patches_norm 
開發者ID:awentzonline,項目名稱:image-analogies,代碼行數:24,代碼來源:mrf.py

示例13: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def call(self, u_vecs):
        if self.share_weights:
            u_hat_vecs = K.conv1d(u_vecs, self.W)
        else:
            u_hat_vecs = K.local_conv1d(u_vecs, self.W, [1], [1])

        batch_size = K.shape(u_vecs)[0]
        input_num_capsule = K.shape(u_vecs)[1]
        u_hat_vecs = K.reshape(u_hat_vecs, (batch_size, input_num_capsule,
                                            self.num_capsule, self.dim_capsule))
        u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1, 3))
        # final u_hat_vecs.shape = [None, num_capsule, input_num_capsule, dim_capsule]

        b = K.zeros_like(u_hat_vecs[:, :, :, 0])  # shape = [None, num_capsule, input_num_capsule]
        outputs = None
        for i in range(self.routings):
            b = K.permute_dimensions(b, (0, 2, 1))  # shape = [None, input_num_capsule, num_capsule]
            c = K.softmax(b)
            c = K.permute_dimensions(c, (0, 2, 1))
            b = K.permute_dimensions(b, (0, 2, 1))
            outputs = self.activation(K.batch_dot(c, u_hat_vecs, [2, 2]))
            if i < self.routings - 1:
                b = K.batch_dot(outputs, u_hat_vecs, [2, 3])

        return outputs 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:27,代碼來源:capsule.py

示例14: region_style_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def region_style_loss(style_image, target_image, style_mask, target_mask):
    '''Calculate style loss between style_image and target_image,
    for one common region specified by their (boolean) masks
    '''
    assert 3 == K.ndim(style_image) == K.ndim(target_image)
    assert 2 == K.ndim(style_mask) == K.ndim(target_mask)
    if K.image_data_format() == 'channels_first':
        masked_style = style_image * style_mask
        masked_target = target_image * target_mask
        num_channels = K.shape(style_image)[0]
    else:
        masked_style = K.permute_dimensions(
            style_image, (2, 0, 1)) * style_mask
        masked_target = K.permute_dimensions(
            target_image, (2, 0, 1)) * target_mask
        num_channels = K.shape(style_image)[-1]
    num_channels = K.cast(num_channels, dtype='float32')
    s = gram_matrix(masked_style) / K.mean(style_mask) / num_channels
    c = gram_matrix(masked_target) / K.mean(target_mask) / num_channels
    return K.mean(K.square(s - c)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:22,代碼來源:neural_doodle.py

示例15: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import permute_dimensions [as 別名]
def call(self, u_vecs):
        if self.share_weights:
            u_hat_vecs = K.conv1d(u_vecs, self.W)
        else:
            u_hat_vecs = K.local_conv1d(u_vecs, self.W, [1], [1])

        batch_size = K.shape(u_vecs)[0]
        input_num_capsule = K.shape(u_vecs)[1]
        u_hat_vecs = K.reshape(u_hat_vecs, (batch_size, input_num_capsule,
                                            self.num_capsule, self.dim_capsule))    # noqa
        u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1, 3))
        # final u_hat_vecs.shape = [None, num_capsule, input_num_capsule, dim_capsule]  # noqa

        b = K.zeros_like(u_hat_vecs[:, :, :, 0])  # shape = [None, num_capsule, input_num_capsule]  # noqa
        for i in range(self.routings):
            b = K.permute_dimensions(b, (0, 2, 1))  # shape = [None, input_num_capsule, num_capsule]    # noqa
            c = K.softmax(b)
            c = K.permute_dimensions(c, (0, 2, 1))
            b = K.permute_dimensions(b, (0, 2, 1))
            outputs = self.activation(tf.keras.backend.batch_dot(c, u_hat_vecs, [2, 2]))    # noqa
            if i < self.routings - 1:
                b = tf.keras.backend.batch_dot(outputs, u_hat_vecs, [2, 3])
        return outputs 
開發者ID:KevinLiao159,項目名稱:Quora,代碼行數:25,代碼來源:neural_networks.py


注:本文中的keras.backend.permute_dimensions方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。