當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.ones方法代碼示例

本文整理匯總了Python中keras.backend.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.ones方法的具體用法?Python backend.ones怎麽用?Python backend.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.ones方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_weightnorm_params_and_grads

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def get_weightnorm_params_and_grads(p, g):
    ps = K.get_variable_shape(p)

    # construct weight scaler: V_scaler = g/||V||
    V_scaler_shape = (ps[-1],)  # assumes we're using tensorflow!
    V_scaler = K.ones(V_scaler_shape)  # init to ones, so effective parameters don't change

    # get V parameters = ||V||/g * W
    norm_axes = [i for i in range(len(ps) - 1)]
    V = p / tf.reshape(V_scaler, [1] * len(norm_axes) + [-1])

    # split V_scaler into ||V|| and g parameters
    V_norm = tf.sqrt(tf.reduce_sum(tf.square(V), norm_axes))
    g_param = V_scaler * V_norm

    # get grad in V,g parameters
    grad_g = tf.reduce_sum(g * V, norm_axes) / V_norm
    grad_V = tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) * \
             (g - tf.reshape(grad_g / V_norm, [1] * len(norm_axes) + [-1]) * V)

    return V, V_norm, V_scaler, g_param, grad_g, grad_V 
開發者ID:openai,項目名稱:weightnorm,代碼行數:23,代碼來源:weightnorm.py

示例2: compute_attention_mask

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def compute_attention_mask(self, layer_id, segment_ids):
        """為seq2seq采用特定的attention mask
        """
        if self.attention_mask is None:

            def seq2seq_attention_mask(s, repeats=1):
                seq_len = K.shape(s)[1]
                ones = K.ones((1, repeats, seq_len, seq_len))
                a_mask = tf.linalg.band_part(ones, -1, 0)
                s_ex12 = K.expand_dims(K.expand_dims(s, 1), 2)
                s_ex13 = K.expand_dims(K.expand_dims(s, 1), 3)
                a_mask = (1 - s_ex13) * (1 - s_ex12) + s_ex13 * a_mask
                a_mask = K.reshape(a_mask, (-1, seq_len, seq_len))
                return a_mask

            self.attention_mask = Lambda(
                seq2seq_attention_mask,
                arguments={"repeats": self.num_attention_heads},
                name="Attention-Mask")(segment_ids)

        return self.attention_mask 
開發者ID:liushaoweihua,項目名稱:keras-bert-ner,代碼行數:23,代碼來源:bert.py

示例3: get_initial_state

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def get_initial_state(self, X):
        #if not self.stateful:
        #    self.controller.reset_states()

        init_old_ntm_output = K.ones((self.batch_size, self.output_dim), name="init_old_ntm_output")*0.42 
        init_M = K.ones((self.batch_size, self.n_slots , self.m_depth), name='main_memory')*0.042
        init_wr = np.zeros((self.batch_size, self.read_heads, self.n_slots))
        init_wr[:,:,0] = 1
        init_wr = K.variable(init_wr, name="init_weights_read")
        init_ww = np.zeros((self.batch_size, self.write_heads, self.n_slots))
        init_ww[:,:,0] = 1
        init_ww = K.variable(init_ww, name="init_weights_write")
        return [init_old_ntm_output, init_M, init_wr, init_ww]




    # See chapter 3.1 
開發者ID:flomlo,項目名稱:ntm_keras,代碼行數:20,代碼來源:ntm.py

示例4: test_masking_correctness

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def test_masking_correctness(layer_class):
    # Check masking: output with left padding and right padding
    # should be the same.
    model = Sequential()
    model.add(embeddings.Embedding(embedding_num, embedding_dim,
                                   mask_zero=True,
                                   input_length=timesteps,
                                   batch_input_shape=(num_samples, timesteps)))
    layer = layer_class(units, return_sequences=False)
    model.add(layer)
    model.compile(optimizer='sgd', loss='mse')

    left_padded_input = np.ones((num_samples, timesteps))
    left_padded_input[0, :1] = 0
    left_padded_input[1, :2] = 0
    out6 = model.predict(left_padded_input)

    right_padded_input = np.ones((num_samples, timesteps))
    right_padded_input[0, -1:] = 0
    right_padded_input[1, -2:] = 0
    out7 = model.predict(right_padded_input)

    assert_allclose(out7, out6, atol=1e-5) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:25,代碼來源:recurrent_test.py

示例5: test_regularizer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def test_regularizer(layer_class):
    layer = layer_class(units, return_sequences=False, weights=None,
                        input_shape=(timesteps, embedding_dim),
                        kernel_regularizer=regularizers.l1(0.01),
                        recurrent_regularizer=regularizers.l1(0.01),
                        bias_regularizer='l2')
    layer.build((None, None, embedding_dim))
    assert len(layer.losses) == 3
    assert len(layer.cell.losses) == 3

    layer = layer_class(units, return_sequences=False, weights=None,
                        input_shape=(timesteps, embedding_dim),
                        activity_regularizer='l2')
    assert layer.activity_regularizer
    x = K.variable(np.ones((num_samples, timesteps, embedding_dim)))
    layer(x)
    assert len(layer.cell.get_losses_for(x)) == 0
    assert len(layer.get_losses_for(x)) == 1 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:20,代碼來源:recurrent_test.py

示例6: test_reset_states_with_values

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def test_reset_states_with_values(layer_class):
    num_states = 2 if layer_class is recurrent.LSTM else 1

    layer = layer_class(units, stateful=True)
    layer.build((num_samples, timesteps, embedding_dim))
    layer.reset_states()
    assert len(layer.states) == num_states
    assert layer.states[0] is not None
    np.testing.assert_allclose(K.eval(layer.states[0]),
                               np.zeros(K.int_shape(layer.states[0])),
                               atol=1e-4)
    state_shapes = [K.int_shape(state) for state in layer.states]
    values = [np.ones(shape) for shape in state_shapes]
    if len(values) == 1:
        values = values[0]
    layer.reset_states(values)
    np.testing.assert_allclose(K.eval(layer.states[0]),
                               np.ones(K.int_shape(layer.states[0])),
                               atol=1e-4)

    # Test fit with invalid data
    with pytest.raises(ValueError):
        layer.reset_states([1] * (len(layer.states) + 1)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:25,代碼來源:recurrent_test.py

示例7: tversky_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def tversky_loss(y_true, y_pred):
    # ignore the last category
    shp = K.shape(y_true)
    y_true = y_true[:, :, :, 0:shp[3] - 1]
    y_pred = y_pred[:, :, :, 0:shp[3] - 1]

    alpha = 1.0
    beta = 1.0
    ones = K.ones(K.shape(y_true))
    p0 = y_pred
    p1 = ones - y_pred
    g0 = y_true
    g1 = ones - y_true
    num = K.sum(p0 * g0, (0, 1, 2))
    den = num + alpha * K.sum(p0 * g1, (0, 1, 2)) + beta * K.sum(p1 * g0, (0, 1, 2))
    T = K.sum(num / den)
    Ncl = K.cast(K.shape(y_true)[-1], 'float32')
    return Ncl - T 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:20,代碼來源:train.py

示例8: get_pts_from_predict

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def get_pts_from_predict(self, batch):
        """ Get points from predictor """
        logger.debug("Obtain points from prediction")
        num_images, num_landmarks, height, width = batch["prediction"].shape
        image_slice = np.repeat(np.arange(num_images)[:, None], num_landmarks, axis=1)
        landmark_slice = np.repeat(np.arange(num_landmarks)[None, :], num_images, axis=0)
        resolution = np.full((num_images, num_landmarks), 64, dtype='int32')
        subpixel_landmarks = np.ones((num_images, num_landmarks, 3), dtype='float32')

        flat_indices = batch["prediction"].reshape(num_images, num_landmarks, -1).argmax(-1)
        indices = np.array(np.unravel_index(flat_indices, (height, width)))
        min_clipped = np.minimum(indices + 1, height - 1)
        max_clipped = np.maximum(indices - 1, 0)
        offsets = [(image_slice, landmark_slice, indices[0], min_clipped[1]),
                   (image_slice, landmark_slice, indices[0], max_clipped[1]),
                   (image_slice, landmark_slice, min_clipped[0], indices[1]),
                   (image_slice, landmark_slice, max_clipped[0], indices[1])]
        x_subpixel_shift = batch["prediction"][offsets[0]] - batch["prediction"][offsets[1]]
        y_subpixel_shift = batch["prediction"][offsets[2]] - batch["prediction"][offsets[3]]
        # TODO improve rudimentary sub-pixel logic to centroid of 3x3 window algorithm
        subpixel_landmarks[:, :, 0] = indices[1] + np.sign(x_subpixel_shift) * 0.25 + 0.5
        subpixel_landmarks[:, :, 1] = indices[0] + np.sign(y_subpixel_shift) * 0.25 + 0.5

        batch["landmarks"] = self.transform(subpixel_landmarks, batch["center_scale"], resolution)
        logger.trace("Obtained points from prediction: %s", batch["landmarks"]) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:27,代碼來源:fan.py

示例9: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def call(self, inputs, **kwargs):
        input_shape = K.int_shape(inputs)

        broadcast_shape = [1] * len(input_shape)
        broadcast_shape[self.axis] = input_shape[self.axis]

        broadcast_moving_mean = K.reshape(self.moving_mean, broadcast_shape)
        broadcast_moving_variance = K.reshape(self.moving_variance,
                                              broadcast_shape)
        broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
        broadcast_beta = K.reshape(self.beta, broadcast_shape)
        invstd = (
            K.ones(shape=broadcast_shape, dtype='float32')
            / K.sqrt(broadcast_moving_variance + self._epsilon_const)
        )

        return((inputs - broadcast_moving_mean)
               * invstd
               * broadcast_gamma
               + broadcast_beta) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:22,代碼來源:fan.py

示例10: get_weightnorm_params_and_grads

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def get_weightnorm_params_and_grads(p, g):
    ps = K.get_variable_shape(p)
    # construct weight scaler: V_scaler = g/||V||
    V_scaler_shape = (ps[-1],)  # assumes we're using tensorflow!
    V_scaler = K.ones(V_scaler_shape)  # init to ones, so effective parameters don't change
    # get V parameters = ||V||/g * W
    norm_axes = [i for i in range(len(ps) - 1)]
    V = p / tf.reshape(V_scaler, [1] * len(norm_axes) + [-1])
    # split V_scaler into ||V|| and g parameters
    V_norm = tf.sqrt(tf.reduce_sum(tf.square(V), norm_axes))
    g_param = V_scaler * V_norm
    # get grad in V,g parameters
    grad_g = tf.reduce_sum(g * V, norm_axes) / V_norm
    grad_V = tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) * \
             (g - tf.reshape(grad_g / V_norm, [1] * len(norm_axes) + [-1]) * V)
    return V, V_norm, V_scaler, g_param, grad_g, grad_V 
開發者ID:wmylxmj,項目名稱:Anime-Super-Resolution,代碼行數:18,代碼來源:optimizer.py

示例11: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def __init__(self, output_shape, coeff, **kwargs):
        self.output_size = output_shape
        self.coeff = coeff

        self.base = k_b.ones((1, self.calc_cell_units()), dtype=np.float)
        self.ones = k_b.ones((21, 1, 2))
        self.board_ones = k_b.ones((21, self.calc_cell_units(), 2))

        pair = []
        for i in range(0, self.calc_cell_units()):
            pair.append((i%self.output_size[0], i//self.output_size[1]))
        pair = np.asarray(pair)

        self.back_board = k_b.ones((self.calc_cell_units(),2))
        print(pair.shape)
        k_b.set_value(self.back_board, pair)
        super(RenderingLayer, self).__init__(**kwargs) 
開發者ID:Ninebell,項目名稱:GaneratedHandsForReal_TIME,代碼行數:19,代碼來源:projLayer.py

示例12: build

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def build(self, input_shape):
    super(LSTM_LN, self).build(input_shape)
    self.gs, self.bs = [], []
    for i in xrange(3):
      f = 1 if i == 2 else 4
      self.gs += [ K.ones((f*self.output_dim,), name='{}_g%i'.format(self.name, i)) ]
      self.bs += [ K.zeros((f*self.output_dim,), name='{}_b%d'.format(self.name, i)) ]
    self.trainable_weights += self.gs + self.bs 
開發者ID:LaurentMazare,項目名稱:deep-models,代碼行數:10,代碼來源:lstm_ln.py

示例13: sqrt_init

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import ones [as 別名]
def sqrt_init(shape, dtype=None):
    value = (1 / K.sqrt(2)) * K.ones(shape)
    return value 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:5,代碼來源:bn.py


注:本文中的keras.backend.ones方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。