當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.one_hot方法代碼示例

本文整理匯總了Python中keras.backend.one_hot方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.one_hot方法的具體用法?Python backend.one_hot怎麽用?Python backend.one_hot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.one_hot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: optimizer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def optimizer(self):
        a = K.placeholder(shape=(None,), dtype='int32')
        y = K.placeholder(shape=(None,), dtype='float32')

        prediction = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(prediction * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # 상태가 입력, 큐함수가 출력인 인공신경망 생성 
開發者ID:rlcode,項目名稱:reinforcement-learning-kr,代碼行數:23,代碼來源:breakout_dqn.py

示例2: optimizer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def optimizer(self):
        a = K.placeholder(shape=(None, ), dtype='int32')
        y = K.placeholder(shape=(None, ), dtype='float32')

        py_x = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(py_x * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # approximate Q function using Convolution Neural Network
    # state is input and Q Value of each action is output of network 
開發者ID:rlcode,項目名稱:reinforcement-learning,代碼行數:24,代碼來源:breakout_ddqn.py

示例3: optimizer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def optimizer(self):
        a = K.placeholder(shape=(None,), dtype='int32')
        y = K.placeholder(shape=(None,), dtype='float32')

        py_x = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(py_x * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # approximate Q function using Convolution Neural Network
    # state is input and Q Value of each action is output of network 
開發者ID:rlcode,項目名稱:reinforcement-learning,代碼行數:24,代碼來源:breakout_dqn.py

示例4: optimizer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def optimizer(self):
        a = K.placeholder(shape=(None, ), dtype='int32')
        y = K.placeholder(shape=(None, ), dtype='float32')

        py_x = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(py_x * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # approximate Q function using Convolution Neural Network
    # state is input and Q Value of each action is output of network
    # dueling network's Q Value is sum of advantages and state value 
開發者ID:rlcode,項目名稱:reinforcement-learning,代碼行數:25,代碼來源:breakout_dueling_ddqn.py

示例5: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def call(self, inputs, **kwargs):
        if type(inputs) is list:  # true label is provided with shape = [None, n_classes], i.e. one-hot code.
            assert len(inputs) == 2
            inputs, mask = inputs
        else:  # if no true label, mask by the max length of capsules. Mainly used for prediction
            # compute lengths of capsules
            x = K.sqrt(K.sum(K.square(inputs), -1))
            # generate the mask which is a one-hot code.
            # mask.shape=[None, n_classes]=[None, num_capsule]
            mask = K.one_hot(indices=K.argmax(x, 1), num_classes=x.get_shape().as_list()[1])

        # inputs.shape=[None, num_capsule, dim_capsule]
        # mask.shape=[None, num_capsule]
        # masked.shape=[None, num_capsule * dim_capsule]
        masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))
        return masked 
開發者ID:ssrp,項目名稱:Multi-level-DCNet,代碼行數:18,代碼來源:capsulelayers.py

示例6: labelembed_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def labelembed_loss(out1, out2, tar, targets, tau = 2., alpha = 0.9, beta = 0.5, num_classes = 100):
    
    out2_prob = K.softmax(out2)
    tau2_prob = K.stop_gradient(K.softmax(out2 / tau))
    soft_tar = K.stop_gradient(K.softmax(tar))
    
    L_o1_y = K.sparse_categorical_crossentropy(output = K.softmax(out1), target = targets)
    
    pred = K.argmax(out2, axis = -1)
    mask = K.stop_gradient(K.cast(K.equal(pred, K.cast(targets, 'int64')), K.floatx()))
    L_o1_emb = -cross_entropy(out1, soft_tar)  # pylint: disable=invalid-unary-operand-type
    
    L_o2_y = K.sparse_categorical_crossentropy(output = out2_prob, target = targets)
    L_emb_o2 = -cross_entropy(tar, tau2_prob) * mask * (K.cast(K.shape(mask)[0], K.floatx())/(K.sum(mask)+1e-8))  # pylint: disable=invalid-unary-operand-type
    L_re = K.relu(K.sum(out2_prob * K.one_hot(K.cast(targets, 'int64'), num_classes), axis = -1) - alpha)
    
    return beta * L_o1_y + (1-beta) * L_o1_emb + L_o2_y + L_emb_o2 + L_re 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:19,代碼來源:learn_labelembedding.py

示例7: softmax_sparse_crossentropy_ignoring_last_label

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def softmax_sparse_crossentropy_ignoring_last_label(y_true, y_pred):
    '''
    Softmax cross-entropy loss function for pascal voc segmentation
    and models which do not perform softmax.
    tensorlow only
    '''
    y_pred = KB.reshape(y_pred, (-1, KB.int_shape(y_pred)[-1]))
    log_softmax = tf.nn.log_softmax(y_pred)

    y_true = KB.one_hot(tf.to_int32(KB.flatten(y_true)),
                        KB.int_shape(y_pred)[-1]+1)
    unpacked = tf.unstack(y_true, axis=-1)
    y_true = tf.stack(unpacked[:-1], axis=-1)

    cross_entropy = -KB.sum(y_true * log_softmax, axis=1)
    cross_entropy_mean = KB.mean(cross_entropy)

    return cross_entropy_mean 
開發者ID:waspinator,項目名稱:deep-learning-explorer,代碼行數:20,代碼來源:losses.py

示例8: set_batch_function

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def set_batch_function(self, model, input_shape, batch_size, nb_actions, gamma):
        input_dim = np.prod(input_shape)
        samples = K.placeholder(shape=(batch_size, input_dim * 2 + 3))
        S = samples[:, 0 : input_dim]
        a = samples[:, input_dim]
        r = samples[:, input_dim + 1]
        S_prime = samples[:, input_dim + 2 : 2 * input_dim + 2]
        game_over = samples[:, 2 * input_dim + 2 : 2 * input_dim + 3]
        r = K.reshape(r, (batch_size, 1))
        r = K.repeat(r, nb_actions)
        r = K.reshape(r, (batch_size, nb_actions))
        game_over = K.repeat(game_over, nb_actions)
        game_over = K.reshape(game_over, (batch_size, nb_actions))
        S = K.reshape(S, (batch_size, ) + input_shape)
        S_prime = K.reshape(S_prime, (batch_size, ) + input_shape)
        X = K.concatenate([S, S_prime], axis=0)
        Y = model(X)
        Qsa = K.max(Y[batch_size:], axis=1)
        Qsa = K.reshape(Qsa, (batch_size, 1))
        Qsa = K.repeat(Qsa, nb_actions)
        Qsa = K.reshape(Qsa, (batch_size, nb_actions))
        delta = K.reshape(self.one_hot(a, nb_actions), (batch_size, nb_actions))
        targets = (1 - delta) * Y[:batch_size] + delta * (r + gamma * (1 - game_over) * Qsa)
        self.batch_function = K.function(inputs=[samples], outputs=[S, targets]) 
開發者ID:farizrahman4u,項目名稱:qlearning4k,代碼行數:26,代碼來源:memory.py

示例9: sparse_categorical_crossentropy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def sparse_categorical_crossentropy(gt_ids, pred_one_hot_post_softmax):
    """
    K.sparse_categorical_crossentropyだと結果がNaNになる。。。
    0割り算が発生しているかも。
    https://qiita.com/4Ui_iUrz1/items/35a8089ab0ebc98061c1
    対策として、微少値を用いてlog(0)にならないよう調整した本関數を作成。
    """
    gt_ids = log.tfprint(gt_ids, "cross:gt_ids:")
    pred_one_hot_post_softmax = log.tfprint(pred_one_hot_post_softmax,
                                            "cross:pred_one_hot_post_softmax:")

    gt_one_hot = K.one_hot(gt_ids, K.shape(pred_one_hot_post_softmax)[-1])
    gt_one_hot = log.tfprint(gt_one_hot, "cross:gt_one_hot:")

    epsilon = K.epsilon()  # 1e-07
    loss = -K.sum(
        gt_one_hot * K.log(
            tf.clip_by_value(pred_one_hot_post_softmax, epsilon, 1 - epsilon)),
        axis=-1)
    loss = log.tfprint(loss, "cross:loss:")
    return loss 
開發者ID:shtamura,項目名稱:maskrcnn,代碼行數:23,代碼來源:loss.py

示例10: Mask

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def Mask(self, inputs, seq_len, mode='mul'):
        """
        # Arguments:
            inputs: input tensor with shape (batch_size, seq_len, input_size)
            seq_len: Each sequence's actual length with shape (batch_size,)
            mode:
                mul: mask the rest dim with zero, used before fully-connected layer
                add: subtract a big constant from the rest, used before softmax layer
        # Reutrns:
            Masked tensors with the same shape of input tensor
        """
        if seq_len is None:
            return inputs
        else:
            mask = K.one_hot(seq_len[:, 0], K.shape(inputs)[1])
            mask = 1 - K.cumsum(mask, 1)
            for _ in range(len(inputs.shape) - 2):
                mask = K.expand_dims(mask, 2)
            if mode == 'mul':
                return inputs * mask
            if mode == 'add':
                return inputs - (1 - mask) * 1e12 
開發者ID:stevewyl,項目名稱:nlp_toolkit,代碼行數:24,代碼來源:self_attention.py

示例11: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def call(self, inputs, mask=None):
        if self.use_token_type:
            assert  len(inputs) == 2, "`token_type_ids` must be specified if `use_token_type` is True."
            output = inputs[0]
            _, seq_length, input_width = K.int_shape(output)
            # print(inputs)
            assert seq_length == K.int_shape(inputs[1])[1], "width of `token_type_ids` must be equal to `seq_length`"
            token_type_ids = inputs[1]
            # assert K.int_shape(token_type_ids)[1] <= self.token_type_vocab_size
            flat_token_type_ids = K.reshape(token_type_ids, [-1])
            flat_token_type_ids = K.cast(flat_token_type_ids, dtype='int32')
            token_type_one_hot_ids = K.one_hot(flat_token_type_ids, num_classes=self.token_type_vocab_size)
            token_type_embeddings = K.dot(token_type_one_hot_ids, self.token_type_table)
            token_type_embeddings = K.reshape(token_type_embeddings, shape=[-1, seq_length, input_width])
            # print(token_type_embeddings)
            output += token_type_embeddings
        else:
            output = inputs
            seq_length = K.int_shape(inputs)[1]

        if self.use_position_embeddings:
            position_embeddings = K.slice(self.full_position_embeddings, [0, 0], [seq_length, -1])
            output += position_embeddings

        return output 
開發者ID:miroozyx,項目名稱:BERT_with_keras,代碼行數:27,代碼來源:modeling.py

示例12: loss_function

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def loss_function(self):
        if self.learn_mode == 'join':
            def loss(y_true, y_pred):
                assert self._inbound_nodes, 'CRF has not connected to any layer.'
                assert not self._outbound_nodes, 'When learn_model="join", CRF must be the last layer.'
                if self.sparse_target:
                    y_true = K.one_hot(K.cast(y_true[:, :, 0], 'int32'), self.units)
                X = self._inbound_nodes[0].input_tensors[0]
                mask = self._inbound_nodes[0].input_masks[0]
                nloglik = self.get_negative_log_likelihood(y_true, X, mask)
                return nloglik
            return loss
        else:
            if self.sparse_target:
                return sparse_categorical_crossentropy
            else:
                return categorical_crossentropy 
開發者ID:yongyuwen,項目名稱:sequence-tagging-ner,代碼行數:19,代碼來源:layers.py

示例13: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def call(self, inputs, **kwargs):
        if isinstance(inputs, list):  # true label is provided with shape = [None, n_classes], i.e. one-hot code.
            assert len(inputs) == 2
            inputs, mask = inputs
        else:  # if no true label, mask by the max length of capsules. Mainly used for prediction
            # compute lengths of capsules
            x = K.sqrt(K.sum(K.square(inputs), -1))
            # generate the mask which is a one-hot code.
            # mask.shape=[None, n_classes]=[None, num_capsule]
            mask = K.one_hot(indices=K.argmax(x, 1), num_classes=x.get_shape().as_list()[1])

        # inputs.shape=[None, num_capsule, dim_capsule]
        # mask.shape=[None, num_capsule]
        # masked.shape=[None, num_capsule * dim_capsule]
        masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))
        return masked 
開發者ID:brjathu,項目名稱:deepcaps,代碼行數:18,代碼來源:capslayers.py

示例14: softmax_sparse_crossentropy_ignoring_last_label

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def softmax_sparse_crossentropy_ignoring_last_label(y_true, y_pred):
    y_pred = K.reshape(y_pred, (-1, K.int_shape(y_pred)[-1]))
    log_softmax = tf.nn.log_softmax(y_pred)

    y_true = K.one_hot(tf.to_int32(K.flatten(y_true)), K.int_shape(y_pred)[-1]+1)
    unpacked = tf.unstack(y_true, axis=-1)
    y_true = tf.stack(unpacked[:-1], axis=-1)

    cross_entropy = -K.sum(y_true * log_softmax, axis=1)
    cross_entropy_mean = K.mean(cross_entropy)

    return cross_entropy_mean


# Softmax cross-entropy loss function for coco segmentation
# and models which expect but do not apply sigmoid on each entry
# tensorlow only 
開發者ID:aurora95,項目名稱:Keras-FCN,代碼行數:19,代碼來源:loss_function.py

示例15: mean_acc

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import one_hot [as 別名]
def mean_acc(y_true, y_pred):
	s = K.shape(y_true)

	# reshape such that w and h dim are multiplied together
	y_true_reshaped = K.reshape( y_true, tf.stack( [-1, s[1]*s[2], s[-1]] ) )
	y_pred_reshaped = K.reshape( y_pred, tf.stack( [-1, s[1]*s[2], s[-1]] ) )

	# correctly classified
	clf_pred = K.one_hot( K.argmax(y_pred_reshaped), nb_classes = s[-1])
	equal_entries = K.cast(K.equal(clf_pred,y_true_reshaped), dtype='float32') * y_true_reshaped

	correct_pixels_per_class = K.sum(equal_entries, axis=1)
	n_pixels_per_class = K.sum(y_true_reshaped,axis=1)

	acc = correct_pixels_per_class / n_pixels_per_class
	acc_mask = tf.is_finite(acc)
	acc_masked = tf.boolean_mask(acc,acc_mask)

	return K.mean(acc_masked) 
開發者ID:theduynguyen,項目名稱:Keras-FCN,代碼行數:21,代碼來源:loss_func.py


注:本文中的keras.backend.one_hot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。