當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.name_scope方法代碼示例

本文整理匯總了Python中keras.backend.name_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.name_scope方法的具體用法?Python backend.name_scope怎麽用?Python backend.name_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.name_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., amsgrad=False, accum_iters=1, **kwargs):
        if accum_iters < 1:
            raise ValueError('accum_iters must be >= 1')
        super(AdamAccumulate, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsgrad = amsgrad
        self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations))
        self.accum_iters_float = K.cast(self.accum_iters, K.floatx()) 
開發者ID:emilwallner,項目名稱:Coloring-greyscale-images,代碼行數:20,代碼來源:AdamAccumulate.py

示例2: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.001, final_lr=0.1, beta_1=0.9, beta_2=0.999, gamma=1e-3,
                 epsilon=None, decay=0., amsbound=False, weight_decay=0.0, **kwargs):
        super(AdaBound, self).__init__(**kwargs)

        if not 0. <= gamma <= 1.:
            raise ValueError("Invalid `gamma` parameter. Must lie in [0, 1] range.")

        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')

        self.final_lr = final_lr
        self.gamma = gamma

        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsbound = amsbound

        self.weight_decay = float(weight_decay)
        self.base_lr = float(lr) 
開發者ID:titu1994,項目名稱:keras-adabound,代碼行數:27,代碼來源:adabound.py

示例3: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=1e-1, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-8, decay=0., amsgrad=False, partial=1. / 8., **kwargs):
        if partial < 0 or partial > 0.5:
            raise ValueError(
                "Padam: 'partial' must be a positive float with a maximum "
                "value of `0.5`, since higher values will cause divergence "
                "during training."
            )
        super(Padam, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.partial = partial
        self.initial_decay = decay
        self.amsgrad = amsgrad 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:23,代碼來源:padam.py

示例4: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self,
                 lr,
                 momentum=0.9,
                 weight_decay=0.0001,
                 eeta=0.001,
                 epsilon=0.0,
                 nesterov=False,
                 **kwargs):

        if momentum < 0.0:
            raise ValueError("momentum should be positive: %s" % momentum)
        if weight_decay < 0.0:
            raise ValueError("weight_decay is not positive: %s" % weight_decay)
        super(LARS, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.momentum = K.variable(momentum, name='momentum')
            self.weight_decay = K.variable(weight_decay, name='weight_decay')
            self.eeta = K.variable(eeta, name='eeta')
        self.epsilon = epsilon
        self.nesterov = nesterov 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:24,代碼來源:lars.py

示例5: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.01, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-3, decay=0., **kwargs):
        super(Yogi, self).__init__(**kwargs)
        if beta_1 <= 0 or beta_1 >= 1:
            raise ValueError("beta_1 has to be in ]0, 1[")
        if beta_2 <= 0 or beta_2 >= 1:
            raise ValueError("beta_2 has to be in ]0, 1[")

        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        if epsilon <= 0:
            raise ValueError("epsilon has to be larger than 0")
        self.epsilon = epsilon
        self.initial_decay = decay 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:22,代碼來源:yogi.py

示例6: _transition_block

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def _transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
    Args:
        ip: keras tensor
        nb_filter: number of filters
        compression: calculated as 1 - reduction. Reduces the number of feature maps
                    in the transition block.
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    with K.name_scope('transition_block'):
        x = BatchNormalization(axis=concat_axis, epsilon=1e-5, momentum=0.1)(ip)
        x = Activation('relu')(x)
        x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
                   kernel_regularizer=l2(weight_decay))(x)
        x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    return x 
開發者ID:titu1994,項目名稱:keras-SparseNet,代碼行數:23,代碼來源:sparsenet.py

示例7: gripper_coordinate_y_pred

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def gripper_coordinate_y_pred(y_true, y_pred):
    """ Get the predicted value at the coordinate found in y_true.

    # Arguments

        y_true: [ground_truth_label, y_height_coordinate, x_width_coordinate]
            Shape of y_true is [batch_size, 3].
        y_pred: Predicted values with shape [batch_size, img_height, img_width, 1].
    """
    with K.name_scope(name="gripper_coordinate_y_pred") as scope:
        if keras.backend.ndim(y_true) == 4:
            # sometimes the dimensions are expanded from 2 to 4
            # to meet Keras' expectations.
            # In that case reduce them back to 2
            y_true = K.squeeze(y_true, axis=-1)
            y_true = K.squeeze(y_true, axis=-1)
        yx_coordinate = K.cast(y_true[:, 1:], 'int32')
        yx_shape = K.shape(yx_coordinate)
        sample_index = K.expand_dims(K.arange(yx_shape[0]), axis=-1)
        byx_coordinate = K.concatenate([sample_index, yx_coordinate], axis=-1)

        # maybe need to transpose yx_coordinate?
        gripper_coordinate_y_predicted = tf.gather_nd(y_pred, byx_coordinate)
        return gripper_coordinate_y_predicted 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:26,代碼來源:grasp_loss.py

示例8: gripper_coordinate_y_true

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def gripper_coordinate_y_true(y_true, y_pred=None):
    """ Get the label found in y_true which also contains coordinates.

    # Arguments

        y_true: [ground_truth_label, y_height_coordinate, x_width_coordinate]
            Shape of y_true is [batch_size, 3].
        y_pred: Predicted values with shape [batch_size, img_height, img_width, 1].
    """
    with K.name_scope(name="gripper_coordinate_y_true") as scope:
        if keras.backend.ndim(y_true) == 4:
            # sometimes the dimensions are expanded from 2 to 4
            # to meet Keras' expectations.
            # In that case reduce them back to 2
            y_true = K.squeeze(y_true, axis=-1)
            y_true = K.squeeze(y_true, axis=-1)
        label = K.cast(y_true[:, :1], 'float32')
        return label 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:20,代碼來源:grasp_loss.py

示例9: segmentation_gaussian_binary_crossentropy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def segmentation_gaussian_binary_crossentropy(
        y_true,
        y_pred,
        gaussian_sigma=3):
    with K.name_scope(name='segmentation_gaussian_binary_crossentropy') as scope:
        if keras.backend.ndim(y_true) == 4:
            # sometimes the dimensions are expanded from 2 to 4
            # to meet Keras' expectations.
            # In that case reduce them back to 2
            y_true = K.squeeze(y_true, axis=-1)
            y_true = K.squeeze(y_true, axis=-1)
        results = segmentation_gaussian_measurement_batch(
            y_true, y_pred,
            measurement=segmentation_losses.binary_crossentropy,
            gaussian_sigma=gaussian_sigma)
        return results 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:18,代碼來源:grasp_loss.py

示例10: mean_true

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def mean_true(y_true, y_pred):
    """ mean ground truth value metric

    useful for determining
    summary statistics when using
    the multi-dataset loader

    # Arguments

        y_true: [ground_truth_label, y_height_coordinate, x_width_coordinate]
            Shape of y_true is [batch_size, 3], or [ground_truth_label] with shape [batch_size].
        y_pred: Predicted values with shape [batch_size, img_height, img_width, 1].
    """
    with K.name_scope(name='mean_true') as scope:
        if len(K.int_shape(y_true)) == 2 and K.int_shape(y_true)[1] == 3:
            y_true = K.cast(y_true[:, :1], 'float32')
        return K.mean(y_true) 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:19,代碼來源:grasp_loss.py

示例11: tile_vector_as_image_channels

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def tile_vector_as_image_channels(vector_op, image_shape):
    """
    Takes a vector of length n and an image shape BHWC,
    and repeat the vector as channels at each pixel.

    # Params

      vector_op: A tensor vector to tile.
      image_shape: A list of integers [width, height] with the desired dimensions.
    """
    with K.name_scope('tile_vector_as_image_channels'):
        ivs = K.shape(vector_op)
        # reshape the vector into a single pixel
        vector_pixel_shape = [ivs[0], 1, 1, ivs[1]]
        vector_op = K.reshape(vector_op, vector_pixel_shape)
        # tile the pixel into a full image
        tile_dimensions = [1, image_shape[1], image_shape[2], 1]
        vector_op = K.tile(vector_op, tile_dimensions)
        if K.backend() is 'tensorflow':
            output_shape = [ivs[0], image_shape[1], image_shape[2], ivs[1]]
            vector_op.set_shape(output_shape)
        return vector_op 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:24,代碼來源:hypertree_model.py

示例12: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., amsgrad=False,
                 multipliers=None, debug_verbose=False,**kwargs):
        super(Adam_lr_mult, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsgrad = amsgrad
        self.multipliers = multipliers
        self.debug_verbose = debug_verbose 
開發者ID:manicman1999,項目名稱:StyleGAN-Keras,代碼行數:19,代碼來源:adamlr.py

示例13: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., weight_decay=0.0, **kwargs):
        super(RectifiedAdam, self).__init__(**kwargs)

        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')

        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay

        self.weight_decay = float(weight_decay) 
開發者ID:titu1994,項目名稱:keras_rectified_adam,代碼行數:19,代碼來源:rectified_adam.py

示例14: build

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def build(self, input_shape):
        # We define convolution, maxpooling and dense layers first.
        self.convolution_layers = [Convolution1D(filters=self.num_filters,
                                                 kernel_size=ngram_size,
                                                 activation=self.conv_layer_activation,
                                                 kernel_regularizer=self.regularizer(),
                                                 bias_regularizer=self.regularizer())
                                   for ngram_size in self.ngram_filter_sizes]
        self.projection_layer = Dense(self.output_dim)
        # Building all layers because these sub-layers are not explitly part of the computatonal graph.
        for convolution_layer in self.convolution_layers:
            with K.name_scope(convolution_layer.name):
                convolution_layer.build(input_shape)
        maxpool_output_dim = self.num_filters * len(self.ngram_filter_sizes)
        projection_input_shape = (input_shape[0], maxpool_output_dim)
        with K.name_scope(self.projection_layer.name):
            self.projection_layer.build(projection_input_shape)
        # Defining the weights of this "layer" as the set of weights from all convolution
        # and maxpooling layers.
        self.trainable_weights = []
        for layer in self.convolution_layers + [self.projection_layer]:
            self.trainable_weights.extend(layer.trainable_weights)

        super(CNNEncoder, self).build(input_shape) 
開發者ID:allenai,項目名稱:deep_qa,代碼行數:26,代碼來源:convolutional_encoder.py

示例15: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999,
                 amsgrad=False, model=None, zero_penalties=True,
                 batch_size=32, total_iterations=0, total_iterations_wd=None,
                 use_cosine_annealing=False, lr_multipliers=None,
                 weight_decays=None, init_verbose=True,
                 eta_min=0, eta_max=1, t_cur=0, **kwargs):
        if total_iterations > 1:
            weight_decays = _init_weight_decays(model, zero_penalties,
                                                weight_decays)

        self.initial_decay = kwargs.pop('decay', 0.0)
        self.epsilon = kwargs.pop('epsilon', K.epsilon())
        learning_rate = kwargs.pop('lr', learning_rate)
        eta_t = kwargs.pop('eta_t', 1.)
        super(AdamW, self).__init__(**kwargs)

        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.learning_rate = K.variable(learning_rate, name='learning_rate')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(self.initial_decay, name='decay')
            self.eta_min = K.constant(eta_min, name='eta_min')
            self.eta_max = K.constant(eta_max, name='eta_max')
            self.eta_t = K.variable(eta_t, dtype='float32', name='eta_t')
            self.t_cur = K.variable(t_cur, dtype='int64', name='t_cur')

        self.batch_size = batch_size
        self.total_iterations = total_iterations
        self.total_iterations_wd = total_iterations_wd or total_iterations
        self.amsgrad = amsgrad
        self.lr_multipliers = lr_multipliers
        self.weight_decays = weight_decays or {}
        self.init_verbose = init_verbose
        self.use_cosine_annealing = use_cosine_annealing

        _check_args(self, total_iterations, use_cosine_annealing, weight_decays)
        self._init_lr = learning_rate  # to print lr_mult setup
        self._init_notified = False 
開發者ID:OverLordGoldDragon,項目名稱:keras-adamw,代碼行數:41,代碼來源:optimizers.py


注:本文中的keras.backend.name_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。