本文整理匯總了Python中keras.backend.name_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.name_scope方法的具體用法?Python backend.name_scope怎麽用?Python backend.name_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.name_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., amsgrad=False, accum_iters=1, **kwargs):
if accum_iters < 1:
raise ValueError('accum_iters must be >= 1')
super(AdamAccumulate, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.amsgrad = amsgrad
self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations))
self.accum_iters_float = K.cast(self.accum_iters, K.floatx())
示例2: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.001, final_lr=0.1, beta_1=0.9, beta_2=0.999, gamma=1e-3,
epsilon=None, decay=0., amsbound=False, weight_decay=0.0, **kwargs):
super(AdaBound, self).__init__(**kwargs)
if not 0. <= gamma <= 1.:
raise ValueError("Invalid `gamma` parameter. Must lie in [0, 1] range.")
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
self.final_lr = final_lr
self.gamma = gamma
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.amsbound = amsbound
self.weight_decay = float(weight_decay)
self.base_lr = float(lr)
示例3: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=1e-1, beta_1=0.9, beta_2=0.999,
epsilon=1e-8, decay=0., amsgrad=False, partial=1. / 8., **kwargs):
if partial < 0 or partial > 0.5:
raise ValueError(
"Padam: 'partial' must be a positive float with a maximum "
"value of `0.5`, since higher values will cause divergence "
"during training."
)
super(Padam, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.partial = partial
self.initial_decay = decay
self.amsgrad = amsgrad
示例4: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self,
lr,
momentum=0.9,
weight_decay=0.0001,
eeta=0.001,
epsilon=0.0,
nesterov=False,
**kwargs):
if momentum < 0.0:
raise ValueError("momentum should be positive: %s" % momentum)
if weight_decay < 0.0:
raise ValueError("weight_decay is not positive: %s" % weight_decay)
super(LARS, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.momentum = K.variable(momentum, name='momentum')
self.weight_decay = K.variable(weight_decay, name='weight_decay')
self.eeta = K.variable(eeta, name='eeta')
self.epsilon = epsilon
self.nesterov = nesterov
示例5: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.01, beta_1=0.9, beta_2=0.999,
epsilon=1e-3, decay=0., **kwargs):
super(Yogi, self).__init__(**kwargs)
if beta_1 <= 0 or beta_1 >= 1:
raise ValueError("beta_1 has to be in ]0, 1[")
if beta_2 <= 0 or beta_2 >= 1:
raise ValueError("beta_2 has to be in ]0, 1[")
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
if epsilon <= 0:
raise ValueError("epsilon has to be larger than 0")
self.epsilon = epsilon
self.initial_decay = decay
示例6: _transition_block
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def _transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
Args:
ip: keras tensor
nb_filter: number of filters
compression: calculated as 1 - reduction. Reduces the number of feature maps
in the transition block.
dropout_rate: dropout rate
weight_decay: weight decay factor
Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
'''
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
with K.name_scope('transition_block'):
x = BatchNormalization(axis=concat_axis, epsilon=1e-5, momentum=0.1)(ip)
x = Activation('relu')(x)
x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
kernel_regularizer=l2(weight_decay))(x)
x = AveragePooling2D((2, 2), strides=(2, 2))(x)
return x
示例7: gripper_coordinate_y_pred
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def gripper_coordinate_y_pred(y_true, y_pred):
""" Get the predicted value at the coordinate found in y_true.
# Arguments
y_true: [ground_truth_label, y_height_coordinate, x_width_coordinate]
Shape of y_true is [batch_size, 3].
y_pred: Predicted values with shape [batch_size, img_height, img_width, 1].
"""
with K.name_scope(name="gripper_coordinate_y_pred") as scope:
if keras.backend.ndim(y_true) == 4:
# sometimes the dimensions are expanded from 2 to 4
# to meet Keras' expectations.
# In that case reduce them back to 2
y_true = K.squeeze(y_true, axis=-1)
y_true = K.squeeze(y_true, axis=-1)
yx_coordinate = K.cast(y_true[:, 1:], 'int32')
yx_shape = K.shape(yx_coordinate)
sample_index = K.expand_dims(K.arange(yx_shape[0]), axis=-1)
byx_coordinate = K.concatenate([sample_index, yx_coordinate], axis=-1)
# maybe need to transpose yx_coordinate?
gripper_coordinate_y_predicted = tf.gather_nd(y_pred, byx_coordinate)
return gripper_coordinate_y_predicted
示例8: gripper_coordinate_y_true
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def gripper_coordinate_y_true(y_true, y_pred=None):
""" Get the label found in y_true which also contains coordinates.
# Arguments
y_true: [ground_truth_label, y_height_coordinate, x_width_coordinate]
Shape of y_true is [batch_size, 3].
y_pred: Predicted values with shape [batch_size, img_height, img_width, 1].
"""
with K.name_scope(name="gripper_coordinate_y_true") as scope:
if keras.backend.ndim(y_true) == 4:
# sometimes the dimensions are expanded from 2 to 4
# to meet Keras' expectations.
# In that case reduce them back to 2
y_true = K.squeeze(y_true, axis=-1)
y_true = K.squeeze(y_true, axis=-1)
label = K.cast(y_true[:, :1], 'float32')
return label
示例9: segmentation_gaussian_binary_crossentropy
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def segmentation_gaussian_binary_crossentropy(
y_true,
y_pred,
gaussian_sigma=3):
with K.name_scope(name='segmentation_gaussian_binary_crossentropy') as scope:
if keras.backend.ndim(y_true) == 4:
# sometimes the dimensions are expanded from 2 to 4
# to meet Keras' expectations.
# In that case reduce them back to 2
y_true = K.squeeze(y_true, axis=-1)
y_true = K.squeeze(y_true, axis=-1)
results = segmentation_gaussian_measurement_batch(
y_true, y_pred,
measurement=segmentation_losses.binary_crossentropy,
gaussian_sigma=gaussian_sigma)
return results
示例10: mean_true
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def mean_true(y_true, y_pred):
""" mean ground truth value metric
useful for determining
summary statistics when using
the multi-dataset loader
# Arguments
y_true: [ground_truth_label, y_height_coordinate, x_width_coordinate]
Shape of y_true is [batch_size, 3], or [ground_truth_label] with shape [batch_size].
y_pred: Predicted values with shape [batch_size, img_height, img_width, 1].
"""
with K.name_scope(name='mean_true') as scope:
if len(K.int_shape(y_true)) == 2 and K.int_shape(y_true)[1] == 3:
y_true = K.cast(y_true[:, :1], 'float32')
return K.mean(y_true)
示例11: tile_vector_as_image_channels
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def tile_vector_as_image_channels(vector_op, image_shape):
"""
Takes a vector of length n and an image shape BHWC,
and repeat the vector as channels at each pixel.
# Params
vector_op: A tensor vector to tile.
image_shape: A list of integers [width, height] with the desired dimensions.
"""
with K.name_scope('tile_vector_as_image_channels'):
ivs = K.shape(vector_op)
# reshape the vector into a single pixel
vector_pixel_shape = [ivs[0], 1, 1, ivs[1]]
vector_op = K.reshape(vector_op, vector_pixel_shape)
# tile the pixel into a full image
tile_dimensions = [1, image_shape[1], image_shape[2], 1]
vector_op = K.tile(vector_op, tile_dimensions)
if K.backend() is 'tensorflow':
output_shape = [ivs[0], image_shape[1], image_shape[2], ivs[1]]
vector_op.set_shape(output_shape)
return vector_op
示例12: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., amsgrad=False,
multipliers=None, debug_verbose=False,**kwargs):
super(Adam_lr_mult, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.amsgrad = amsgrad
self.multipliers = multipliers
self.debug_verbose = debug_verbose
示例13: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., weight_decay=0.0, **kwargs):
super(RectifiedAdam, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.weight_decay = float(weight_decay)
示例14: build
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def build(self, input_shape):
# We define convolution, maxpooling and dense layers first.
self.convolution_layers = [Convolution1D(filters=self.num_filters,
kernel_size=ngram_size,
activation=self.conv_layer_activation,
kernel_regularizer=self.regularizer(),
bias_regularizer=self.regularizer())
for ngram_size in self.ngram_filter_sizes]
self.projection_layer = Dense(self.output_dim)
# Building all layers because these sub-layers are not explitly part of the computatonal graph.
for convolution_layer in self.convolution_layers:
with K.name_scope(convolution_layer.name):
convolution_layer.build(input_shape)
maxpool_output_dim = self.num_filters * len(self.ngram_filter_sizes)
projection_input_shape = (input_shape[0], maxpool_output_dim)
with K.name_scope(self.projection_layer.name):
self.projection_layer.build(projection_input_shape)
# Defining the weights of this "layer" as the set of weights from all convolution
# and maxpooling layers.
self.trainable_weights = []
for layer in self.convolution_layers + [self.projection_layer]:
self.trainable_weights.extend(layer.trainable_weights)
super(CNNEncoder, self).build(input_shape)
示例15: __init__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import name_scope [as 別名]
def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999,
amsgrad=False, model=None, zero_penalties=True,
batch_size=32, total_iterations=0, total_iterations_wd=None,
use_cosine_annealing=False, lr_multipliers=None,
weight_decays=None, init_verbose=True,
eta_min=0, eta_max=1, t_cur=0, **kwargs):
if total_iterations > 1:
weight_decays = _init_weight_decays(model, zero_penalties,
weight_decays)
self.initial_decay = kwargs.pop('decay', 0.0)
self.epsilon = kwargs.pop('epsilon', K.epsilon())
learning_rate = kwargs.pop('lr', learning_rate)
eta_t = kwargs.pop('eta_t', 1.)
super(AdamW, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.learning_rate = K.variable(learning_rate, name='learning_rate')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(self.initial_decay, name='decay')
self.eta_min = K.constant(eta_min, name='eta_min')
self.eta_max = K.constant(eta_max, name='eta_max')
self.eta_t = K.variable(eta_t, dtype='float32', name='eta_t')
self.t_cur = K.variable(t_cur, dtype='int64', name='t_cur')
self.batch_size = batch_size
self.total_iterations = total_iterations
self.total_iterations_wd = total_iterations_wd or total_iterations
self.amsgrad = amsgrad
self.lr_multipliers = lr_multipliers
self.weight_decays = weight_decays or {}
self.init_verbose = init_verbose
self.use_cosine_annealing = use_cosine_annealing
_check_args(self, total_iterations, use_cosine_annealing, weight_decays)
self._init_lr = learning_rate # to print lr_mult setup
self._init_notified = False