本文整理匯總了Python中keras.backend.minimum方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.minimum方法的具體用法?Python backend.minimum怎麽用?Python backend.minimum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.minimum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: batch_iou
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def batch_iou(boxes, box):
"""Compute the Intersection-Over-Union of a batch of boxes with another
box.
Args:
box1: 2D array of [cx, cy, width, height].
box2: a single array of [cx, cy, width, height]
Returns:
ious: array of a float number in range [0, 1].
"""
lr = np.maximum(
np.minimum(boxes[:,0]+0.5*boxes[:,2], box[0]+0.5*box[2]) - \
np.maximum(boxes[:,0]-0.5*boxes[:,2], box[0]-0.5*box[2]),
0
)
tb = np.maximum(
np.minimum(boxes[:,1]+0.5*boxes[:,3], box[1]+0.5*box[3]) - \
np.maximum(boxes[:,1]-0.5*boxes[:,3], box[1]-0.5*box[3]),
0
)
inter = lr*tb
union = boxes[:,2]*boxes[:,3] + box[2]*box[3] - inter
return inter/union
示例2: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def call(self, x):
# previous mean
pre_mean = self.mean
# compute this batch stats
this_sum = tf.reduce_sum(x, 0)
this_bs = tf.cast(K.shape(x)[0], 'float32') # this batch size
# increase count and compute weights
new_count = self.count + this_bs
alpha = this_bs/K.minimum(new_count, self.cap)
# compute new mean. Note that once we reach self.cap (e.g. 1000), the 'previous mean' matters less
new_mean = pre_mean * (1-alpha) + (this_sum/this_bs) * alpha
updates = [(self.count, new_count), (self.mean, new_mean)]
self.add_update(updates, x)
# the first few 1000 should not matter that much towards this cost
return K.minimum(1., new_count/self.cap) * K.expand_dims(new_mean, 0)
示例3: ori_acc_delta_k
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def ori_acc_delta_k(y_true, y_pred, k=10, max_delta=180):
# get ROI
label_seg = K.sum(y_true, axis=-1)
label_seg = K.tf.cast(K.tf.greater(label_seg, 0), K.tf.float32)
# get pred angle
angle = K.cast(K.argmax(ori_highest_peak(y_pred, max_delta), axis=-1), dtype=K.tf.float32)*2.0+1.0
# get gt angle
angle_t = K.cast(K.argmax(y_true, axis=-1), dtype=K.tf.float32)*2.0+1.0
# get delta
angle_delta = K.abs(angle_t - angle)
acc = K.tf.less_equal(K.minimum(angle_delta, max_delta-angle_delta), k)
acc = K.cast(acc, dtype=K.tf.float32)
# apply ROI
acc = acc*label_seg
acc = K.sum(acc) / (K.sum(label_seg)+K.epsilon())
return acc
示例4: box_iou
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def box_iou(b1, b2):
'''Return iou tensor
Parameters
----------
b1: tensor, shape=(i1,...,iN, 4), xywh
b2: tensor, shape=(j, 4), xywh
Returns
-------
iou: tensor, shape=(i1,...,iN, j)
'''
# Expand dim to apply broadcasting.
b1 = K.expand_dims(b1, -2)
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh/2.
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# Expand dim to apply broadcasting.
b2 = K.expand_dims(b2, 0)
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh/2.
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half
intersect_mins = K.maximum(b1_mins, b2_mins)
intersect_maxes = K.minimum(b1_maxes, b2_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
iou = intersect_area / (b1_area + b2_area - intersect_area)
return iou
示例5: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def call(self,x):
y_pred=x[0]
y_recont_gt=x[1]
y_prob_pred=tf.squeeze(x[2],axis=3)
y_prob_gt=x[3]
visible = tf.cast(y_prob_gt > 0.5,y_pred.dtype)
visible = tf.squeeze(visible,axis=3)
#generate transformed values using sym
if(len(self.sym)>1):
#if(True):
for sym_id,transform in enumerate(self.sym): #3x3 matrix
tf_mat=tf.convert_to_tensor(transform,y_recont_gt.dtype)
y_gt_transformed = tf.transpose(tf.matmul(tf_mat,tf.transpose(tf.reshape(y_recont_gt,[-1,3]))))
y_gt_transformed = tf.reshape(y_gt_transformed,[-1,128,128,3])
loss_xyz_temp = K.sum(K.abs(y_gt_transformed-y_pred),axis=3)/3
loss_sum=K.sum(loss_xyz_temp,axis=[1,2])
if(sym_id>0):
loss_sums = tf.concat([loss_sums,tf.expand_dims(loss_sum,axis=0)],axis=0)
loss_xyzs= tf.concat([loss_xyzs,tf.expand_dims(loss_xyz_temp,axis=0)],axis=0)
else:
loss_sums = tf.expand_dims(loss_sum,axis=0)
loss_xyzs = tf.expand_dims(loss_xyz_temp,axis=0)
min_values = tf.reduce_min(loss_sums,axis=0,keepdims=True)
loss_switch = tf.cast(tf.equal(loss_sums,min_values),y_pred.dtype)
loss_xyz = tf.expand_dims(tf.expand_dims(loss_switch,axis=2),axis=3)*loss_xyzs
loss_xyz = K.sum(loss_xyz,axis=0)
else:
loss_xyz = K.sum(K.abs(y_recont_gt-y_pred),axis=3)/3
prob_loss = K.square(y_prob_pred-K.minimum(loss_xyz,1))
loss_invisible = (1-visible)*loss_xyz
loss_visible = visible*loss_xyz
loss = loss_visible*3 + loss_invisible+ 0.5*prob_loss
loss = K.mean(loss,axis=[1,2])
return loss
示例6: tensor_iou
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def tensor_iou(box1, box2, input_mask, config):
"""Computes pairwise IOU of two lists of boxes
Arguments:
box1 {[type]} -- First list of boxes
box2 {[type]} -- Second list of boxes
input_mask {[type]} -- Zero-One indicating which boxes to compute
config {[type]} -- dict containing hyperparameters
Returns:
[type] -- [description]
"""
xmin = K.maximum(box1[0], box2[0])
ymin = K.maximum(box1[1], box2[1])
xmax = K.minimum(box1[2], box2[2])
ymax = K.minimum(box1[3], box2[3])
w = K.maximum(0.0, xmax - xmin)
h = K.maximum(0.0, ymax - ymin)
intersection = w * h
w1 = box1[2] - box1[0]
h1 = box1[3] - box1[1]
w2 = box2[2] - box2[0]
h2 = box2[3] - box2[1]
union = w1 * h1 + w2 * h2 - intersection
return intersection / (union + config.EPSILON) * K.reshape(input_mask, [config.BATCH_SIZE, config.ANCHORS])
示例7: box_iou
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def box_iou(b1, b2):
# 13,13,3,1,4
# 計算左上角的坐標和右下角的坐標
b1 = K.expand_dims(b1, -2)
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh/2.
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# 1,n,4
# 計算左上角和右下角的坐標
b2 = K.expand_dims(b2, 0)
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh/2.
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half
# 計算重合麵積
intersect_mins = K.maximum(b1_mins, b2_mins)
intersect_maxes = K.minimum(b1_maxes, b2_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
iou = intersect_area / (b1_area + b2_area - intersect_area)
return iou
#---------------------------------------------------#
# loss值計算
#---------------------------------------------------#
示例8: emit_Minimum
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def emit_Minimum(self, IR_node, in_scope=False):
if in_scope:
code = "{:<15} = K.minimum({}, {})".format(
IR_node.variable_name,
self.parent_variable_name(IR_node),
self.parent_variable_name(IR_node, [1])
)
return code
else:
return self._emit_merge(IR_node, 'Minimum')
示例9: get_iou
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def get_iou(bbox_base, bbox_target):
"""2つのBoundingBoxのIoU(Intersection Over Union)を取得する。
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
Args:
bbox_base (ndarray): 基準になるBoudingBox。
Its shape is :math:`(N, 4)`.
2軸目に以下の順でBBoxの座標を保持する。
:math:`p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}`.
bbox_target (ndarray): BoudingBox。
Its shape is :math:`(K, 4)`.
2軸目に以下の順でBBoxの座標を保持する。
:math:`p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}`.
bbox_baseの各Box毎にbbox_targetを適用し、IoUを求める。
Returns:
ndarray:
IoU(0 <= IoU <= 1)
形狀は以下の通り。
:math:`(N, K)`.
"""
if bbox_base.shape[1] != 4 or bbox_target.shape[1] != 4:
raise IndexError
# 交差領域の左上の座標
# bbox_base[:, None, :]のより次元を増やすことで、
# bbox_baseとbbox_targetを総當りで評価出來る。
# (N, K, 2)の座標が得られる
tl = np.maximum(bbox_base[:, None, :2], bbox_target[:, :2])
# 交差領域の右下の座標
# (N, K, 2)の座標が得られる
br = np.minimum(bbox_base[:, None, 2:], bbox_target[:, 2:])
# 右下-左下=交差領域の(h, w)が得られる。
# h*wで交差領域の麵積。ただし、交差領域がない(右下 <= 左上)ものは除くため0とする。
area_i = np.prod(br - tl, axis=2) * \
np.all(br > tl, axis=2).astype('float32')
area_base = np.prod(bbox_base[:, 2:] - bbox_base[:, :2], axis=1)
area_target = np.prod(bbox_target[:, 2:] - bbox_target[:, :2], axis=1)
return area_i / (area_base[:, None] + area_target - area_i)
示例10: get_iou_K
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def get_iou_K(bbox_base, bbox_target):
"""2つのBoundingBoxのIoU(Intersection Over Union)を取得する。
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
Args:
bbox_base (tensor): 基準になるBoudingBox。
Its shape is :math:`(N, 4)`.
2軸目に以下の順でBBoxの座標を保持する。
:math:`p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}`.
bbox_target (tensor): BoudingBox。
Its shape is :math:`(K, 4)`.
2軸目に以下の順でBBoxの座標を保持する。
:math:`p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}`.
bbox_baseの各Box毎にbbox_targetを適用し、IoUを求める。
Returns:
tensor:
IoU(0 <= IoU <= 1)
形狀は以下の通り。
:math:`(N, K)`.
"""
if bbox_base.shape[1] != 4 or bbox_target.shape[1] != 4:
raise IndexError
# 交差領域の左上の座標
# bbox_base[:, None, :]のより次元を増やすことで、
# bbox_baseとbbox_targetを総當りで評価出來る。
# (N, K, 2)の座標が得られる
tl = K.maximum(bbox_base[:, None, :2], bbox_target[:, :2])
# 交差領域の右下の座標
# (N, K, 2)の座標が得られる
br = K.minimum(bbox_base[:, None, 2:], bbox_target[:, 2:])
# 右下-左下=交差領域の(h, w)が得られる。
# h*wで交差領域の麵積。ただし、交差領域がない(右下 <= 左上)ものは除くため0とする。
area_i = K.prod(br - tl, axis=2) * \
K.cast(K.all(br > tl, axis=2), 'float32')
area_base = K.prod(bbox_base[:, 2:] - bbox_base[:, :2], axis=1)
area_target = K.prod(bbox_target[:, 2:] - bbox_target[:, :2], axis=1)
return area_i / (area_base[:, None] + area_target - area_i)
示例11: update_b
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def update_b(self):
"""
Get a new value for the bias, relaxing it over time to the true value.
"""
i = self.get_layer_idx()
return self.b0 * k.minimum(k.maximum(
0, 1 - (1 - 2 * self.time / self.duration) * i / 50), 1)
示例12: my_logloss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def my_logloss(act, pred):
epsilon = 1e-15
pred = K.maximum(epsilon, pred)
pred = K.minimum(1 - epsilon, pred)
ll = K.sum(act * K.log(pred) + (1 - act) * K.log(1 - pred))
ll = ll * -1.0 / K.shape(act)[0]
return ll
示例13: logloss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def logloss(act, pred):
'''
官方給的損失函數
:param act:
:param pred:
:return:
'''
epsilon = 1e-15
pred = sp.maximum(epsilon, pred)
pred = sp.minimum(1 - epsilon, pred)
ll = sum(act * sp.log(pred) + sp.subtract(1, act) * sp.log(sp.subtract(1, pred)))
ll = ll * -1.0 / len(act)
return ll
示例14: box_iou
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def box_iou(b1, b2):
'''Return iou tensor
Parameters
----------
b1: tensor, shape=(i1,...,iN, 4), xywh
b2: tensor, shape=(j, 4), xywh
Returns
-------
iou: tensor, shape=(i1,...,iN, j)
'''
# Expand dim to apply broadcasting.
b1 = K.expand_dims(b1, -2)
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh/2.
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# Expand dim to apply broadcasting.
b2 = K.expand_dims(b2, 0)
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh/2.
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half
intersect_mins = K.maximum(b1_mins, b2_mins)
intersect_maxes = K.minimum(b1_maxes, b2_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
iou = intersect_area / (b1_area + b2_area - intersect_area)
return iou
示例15: __call__
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import minimum [as 別名]
def __call__(self, inputs, enc_output, context_attn_mask=None):
"""
:param inputs: [N, T_t]
:param enc_output: [N, T_s, dim_model]
:param context_attn_mask: [N, T_t, T_s]
:return:
"""
seq_emb = self.seq_embedding(inputs) # [N, T_t, dim_model]
pos_emb = self.pos_embedding(inputs)
output = Add()([seq_emb, pos_emb]) # [N, T_t, dim_model]
self_attention_padding_mask = Lambda(lambda x: padding_mask(x, x),
name="self_attention_padding_mask")(inputs) # [N, T_t, T_t]
seq_mask = Lambda(lambda x: sequence_mask(x),
name="sequence_mask")(inputs)
# self_attn_mask = Add(name="self_attn_mask")([self_attention_padding_mask, seq_mask]) # [N, T_t, T_t]
self_attn_mask = Lambda(lambda x: K.minimum(x[0], x[1]))(
[self_attention_padding_mask, seq_mask]) # [N, T_t, T_t]
self_attentions = []
context_attentions = []
for decoder in self.decoder_layers:
output, self_attn, context_attn = decoder(output, enc_output, self_attn_mask, context_attn_mask)
self_attentions.append(self_attn)
context_attentions.append(context_attn)
return output, self_attentions, context_attentions