當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.map_fn方法代碼示例

本文整理匯總了Python中keras.backend.map_fn方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.map_fn方法的具體用法?Python backend.map_fn怎麽用?Python backend.map_fn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.map_fn方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def call(self, inputs, **kwargs):
        # (batch_size, 1, input_num_capsule, input_dim_capsule)
        expand_inputs = K.expand_dims(inputs, axis=1)
        # (batch_size, num_capsule, input_num_capsule, input_dim_capsule)
        expand_inputs = K.tile(expand_inputs, (1, self.num_capsule, 1, 1))
        # (batch_size, num_capsule, input_num_capsule, dim_capsule)
        u_hat = K.map_fn(lambda x: K.batch_dot(x, self.W, axes=[2, 3]), expand_inputs)

        if self.num_routing <= 0:
            self.num_routing = 3
        # (batch_size, num_capsule, input_num_capsule)
        b = K.zeros((K.shape(u_hat)[0], self.num_capsule, self.input_num_capsule))
        for i in xrange(self.num_routing):
            # (batch_size, num_capsule, input_num_capsule)
            c = softmax(b, axis=1)
            # (batch_size, num_capsule, dim_capsule)
            s = K.batch_dot(c, u_hat, axes=[2, 2])
            squashed_s = squash(s)
            if i < self.num_routing - 1:
                # (batch_size, num_capsule, input_num_capsule)
                b += K.batch_dot(squashed_s, u_hat, axes=[2, 3])
        return squashed_s 
開發者ID:l11x0m7,項目名稱:CapsNet,代碼行數:24,代碼來源:capsule.py

示例2: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def call(self, inputs, training=None):
        inputs_expand = K.expand_dims(inputs, 1)
        
        inputs_tiled = K.tile(inputs_expand, [1, self.num_capsule, 1, 1])
        
        if(self.channels!=0):
            W2 = K.repeat_elements(self.W,int(self.input_num_capsule/self.channels),1)
        else:
            W2 = self.W
            
        inputs_hat = K.map_fn(lambda x: K.batch_dot(x, W2, [2, 3]) , elems=inputs_tiled)

        b = tf.zeros(shape=[K.shape(inputs_hat)[0], self.num_capsule, self.input_num_capsule])

        assert self.routings > 0, 'The routings should be > 0.'
        for i in range(self.routings):

            c = tf.nn.softmax(b, dim=1)
            outputs = squash(K.batch_dot(c, inputs_hat, [2, 2])+ self.B)

            if i < self.routings - 1:
                b += K.batch_dot(outputs, inputs_hat, [2, 3])

        return outputs 
開發者ID:vinojjayasundara,項目名稱:textcaps,代碼行數:26,代碼來源:capsulelayers.py

示例3: augmented_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def augmented_loss(self, y_true, y_pred):
        _y_pred = Activation("softmax")(y_pred)
        loss = K.categorical_crossentropy(_y_pred, y_true)

        # y is (batch x seq x vocab)
        y_indexes = K.argmax(y_true, axis=2)  # turn one hot to index. (batch x seq)
        y_vectors = self.embedding(y_indexes)  # lookup the vector (batch x seq x vector_length)

        #v_length = self.setting.vector_length
        #y_vectors = K.reshape(y_vectors, (-1, v_length))
        #y_t = K.map_fn(lambda v: K.dot(self.embedding.embeddings, K.reshape(v, (-1, 1))), y_vectors)
        #y_t = K.squeeze(y_t, axis=2)  # unknown but necessary operation
        #y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size))

        # vector x embedding dot products (batch x seq x vocab)
        y_t = tf.tensordot(y_vectors, K.transpose(self.embedding.embeddings), 1)
        y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size))  # explicitly set shape
        y_t = K.softmax(y_t / self.temperature)
        _y_pred_t = Activation("softmax")(y_pred / self.temperature)
        aug_loss = kullback_leibler_divergence(y_t, _y_pred_t)
        loss += (self.gamma * self.temperature) * aug_loss
        return loss 
開發者ID:icoxfog417,項目名稱:tying-wv-and-wc,代碼行數:24,代碼來源:augmented_model.py

示例4: _ctdet_decode

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def _ctdet_decode(hm, reg, wh, k=100, output_stride=4):
  hm = K.sigmoid(hm)
  hm = _nms(hm)
  hm_shape = K.shape(hm)
  reg_shape = K.shape(reg)
  wh_shape = K.shape(wh)
  batch, width, cat = hm_shape[0], hm_shape[2], hm_shape[3]

  hm_flat = K.reshape(hm, (batch, -1))
  reg_flat = K.reshape(reg, (reg_shape[0], -1, reg_shape[-1]))
  wh_flat = K.reshape(wh, (wh_shape[0], -1, wh_shape[-1]))

  def _process_sample(args):
    _hm, _reg, _wh = args
    _scores, _inds = tf.math.top_k(_hm, k=k, sorted=True)
    _classes = K.cast(_inds % cat, 'float32')
    _inds = K.cast(_inds / cat, 'int32')
    _xs = K.cast(_inds % width, 'float32')
    _ys = K.cast(K.cast(_inds / width, 'int32'), 'float32')
    _wh = K.gather(_wh, _inds)
    _reg = K.gather(_reg, _inds)

    _xs = _xs + _reg[..., 0]
    _ys = _ys + _reg[..., 1]

    _x1 = _xs - _wh[..., 0] / 2
    _y1 = _ys - _wh[..., 1] / 2
    _x2 = _xs + _wh[..., 0] / 2
    _y2 = _ys + _wh[..., 1] / 2

    # rescale to image coordinates
    _x1 = output_stride * _x1
    _y1 = output_stride * _y1
    _x2 = output_stride * _x2
    _y2 = output_stride * _y2

    _detection = K.stack([_x1, _y1, _x2, _y2, _scores, _classes], -1)
    return _detection

  detections = K.map_fn(_process_sample, [hm_flat, reg_flat, wh_flat], dtype=K.floatx())
  return detections 
開發者ID:see--,項目名稱:keras-centernet,代碼行數:43,代碼來源:decode.py

示例5: accuracy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def accuracy(y_true, y_pred):

    def calculate_accuracy(true_and_pred):
        y_true, y_pred_start, y_pred_end = true_and_pred

        start_probability = y_pred_start[K.cast(y_true[0], dtype='int32')]
        end_probability = y_pred_end[K.cast(y_true[1], dtype='int32')]
        return (start_probability + end_probability) / 2.0

    y_true = K.squeeze(y_true, axis=1)
    y_pred_start = y_pred[:, 0, :]
    y_pred_end = y_pred[:, 1, :]
    accuracy = K.map_fn(calculate_accuracy, (y_true, y_pred_start, y_pred_end), dtype='float32')
    return K.mean(accuracy, axis=0) 
開發者ID:ParikhKadam,項目名稱:bidaf-keras,代碼行數:16,代碼來源:accuracy_metric.py

示例6: negative_avg_log_error

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def negative_avg_log_error(y_true, y_pred):

    def sum_of_log_probabilities(true_and_pred):
        y_true, y_pred_start, y_pred_end = true_and_pred

        start_probability = y_pred_start[K.cast(y_true[0], dtype='int32')]
        end_probability = y_pred_end[K.cast(y_true[1], dtype='int32')]
        return K.log(start_probability) + K.log(end_probability)

    y_true = K.squeeze(y_true, axis=1)
    y_pred_start = y_pred[:, 0, :]
    y_pred_end = y_pred[:, 1, :]
    batch_probability_sum = K.map_fn(sum_of_log_probabilities, (y_true, y_pred_start, y_pred_end), dtype='float32')
    return -K.mean(batch_probability_sum, axis=0) 
開發者ID:ParikhKadam,項目名稱:bidaf-keras,代碼行數:16,代碼來源:loss_function.py

示例7: mc_dropout_preds

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def mc_dropout_preds(model, x: tf.Tensor, n_mc: int) -> tf.Tensor:
    """
    Take a model, and a tensor of size batch_size x n_classes and return the
    result of doing n_mc stochastic forward passes as a n_mc x batch_size x
    n_classes tensor. This assumes the model has some VI layers like dropout or
    whatever, and that the model has been loaded with
    keras.backend.set_learning_phase(True). Also note that this takes and
    returns keras tensors, not arrays.
    """
    # tile x n_mc times and predict in a batch
    xs = K.stack(list(itr.repeat(x, n_mc)))
    mc_preds = K.map_fn(model, xs)  # [n_mc x batch_size x n_classes]
    return mc_preds 
開發者ID:lsgos,項目名稱:uncertainty-adversarial-paper,代碼行數:15,代碼來源:utilities.py

示例8: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def call(self, inputs, training=None):
        # inputs.shape=[None, input_num_capsule, input_dim_capsule]
        # inputs_expand.shape=[None, 1, input_num_capsule, input_dim_capsule]
        inputs_expand = K.expand_dims(inputs, 1)

        # Replicate num_capsule dimension to prepare being multiplied by W
        # inputs_tiled.shape=[None, num_capsule, input_num_capsule, input_dim_capsule]
        inputs_tiled = K.tile(inputs_expand, [1, self.num_capsule, 1, 1])

        # Compute `inputs * W` by scanning inputs_tiled on dimension 0.
        # x.shape=[num_capsule, input_num_capsule, input_dim_capsule]
        # W.shape=[num_capsule, input_num_capsule, dim_capsule, input_dim_capsule]
        # Regard the first two dimensions as `batch` dimension,
        # then matmul: [input_dim_capsule] x [dim_capsule, input_dim_capsule]^T -> [dim_capsule].
        # inputs_hat.shape = [None, num_capsule, input_num_capsule, dim_capsule]
        inputs_hat = K.map_fn(lambda x: batch_dot(
            x, self.W, [2, 3]), elems=inputs_tiled)

        # Begin: Routing algorithm ---------------------------------------------------------------------#
        # The prior for coupling coefficient, initialized as zeros.
        # b.shape = [None, self.num_capsule, self.input_num_capsule].
        b = tf.zeros(shape=[K.shape(inputs_hat)[0],
                            self.num_capsule, self.input_num_capsule])
        output_list = []
        assert self.routings > 0, 'The routings should be > 0.'
        for i in range(self.routings):
            # c.shape=[batch_size, num_capsule, input_num_capsule]
            c = tf.nn.softmax(b, dim=1)

            # c.shape =  [batch_size, num_capsule, input_num_capsule]
            # inputs_hat.shape=[None, num_capsule, input_num_capsule, dim_capsule]
            # The first two dimensions as `batch` dimension,
            # then matmal: [input_num_capsule] x [input_num_capsule, dim_capsule] -> [dim_capsule].
            # outputs.shape=[None, num_capsule, dim_capsule]
            # [None, 10, 16]
            outputs = squash(batch_dot(c, inputs_hat, [2, 2]))
            # output_list.append(K.expand_dims(outputs,axis=-1))
            if i < self.routings - 1:
                # outputs.shape =  [None, num_capsule, dim_capsule]
                # inputs_hat.shape=[None, num_capsule, input_num_capsule, dim_capsule]
                # The first two dimensions as `batch` dimension,
                # then matmal: [dim_capsule] x [input_num_capsule, dim_capsule]^T -> [input_num_capsule].
                # b.shape=[batch_size, num_capsule, input_num_capsule]
                b += batch_dot(outputs, inputs_hat, [2, 3])
        # End: Routing algorithm -----------------------------------------------------------------------#
        # return K.concatenate(output_list,-1)
        return outputs 
開發者ID:shamangary,項目名稱:FSA-Net,代碼行數:49,代碼來源:capsulelayers.py

示例9: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def call(self, inputs, training=None):
        # inputs.shape=[None, input_num_capsule, input_dim_capsule]
        # inputs_expand.shape=[None, 1, input_num_capsule, input_dim_capsule]
        inputs_expand = K.expand_dims(inputs, 1)

        # Replicate num_capsule dimension to prepare being multiplied by W
        # inputs_tiled.shape=[None, num_capsule, input_num_capsule, input_dim_capsule]
        inputs_tiled = K.tile(inputs_expand, [1, self.num_capsule, 1, 1])

        # Compute `inputs * W` by scanning inputs_tiled on dimension 0.
        # x.shape=[num_capsule, input_num_capsule, input_dim_capsule]
        # W.shape=[num_capsule, input_num_capsule, dim_capsule, input_dim_capsule]
        # Regard the first two dimensions as `batch` dimension,
        # then matmul: [input_dim_capsule] x [dim_capsule, input_dim_capsule]^T -> [dim_capsule].
        # inputs_hat.shape = [None, num_capsule, input_num_capsule, dim_capsule]
        inputs_hat = K.map_fn(lambda x: K.batch_dot(x, self.W, [2, 3]), elems=inputs_tiled)

        # Begin: Routing algorithm ---------------------------------------------------------------------#
        # The prior for coupling coefficient, initialized as zeros.
        # b.shape = [None, self.num_capsule, self.input_num_capsule].
        b = tf.zeros(shape=[K.shape(inputs_hat)[0], self.num_capsule, self.input_num_capsule])

        assert self.routings > 0, 'The routings should be > 0.'
        for i in range(self.routings):
            # c.shape=[batch_size, num_capsule, input_num_capsule]
            c = tf.nn.softmax(b, dim=1)

            # c.shape =  [batch_size, num_capsule, input_num_capsule]
            # inputs_hat.shape=[None, num_capsule, input_num_capsule, dim_capsule]
            # The first two dimensions as `batch` dimension,
            # then matmal: [input_num_capsule] x [input_num_capsule, dim_capsule] -> [dim_capsule].
            # outputs.shape=[None, num_capsule, dim_capsule]
            outputs = squash(K.batch_dot(c, inputs_hat, [2, 2]))  # [None, 10, 16]

            if i < self.routings - 1:
                # outputs.shape =  [None, num_capsule, dim_capsule]
                # inputs_hat.shape=[None, num_capsule, input_num_capsule, dim_capsule]
                # The first two dimensions as `batch` dimension,
                # then matmal: [dim_capsule] x [input_num_capsule, dim_capsule]^T -> [input_num_capsule].
                # b.shape=[batch_size, num_capsule, input_num_capsule]
                b += K.batch_dot(outputs, inputs_hat, [2, 3])
        # End: Routing algorithm -----------------------------------------------------------------------#

        return outputs 
開發者ID:ssrp,項目名稱:Multi-level-DCNet,代碼行數:46,代碼來源:capsulelayers.py

示例10: segmentation_gaussian_measurement

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def segmentation_gaussian_measurement(
        y_true,
        y_pred,
        gaussian_sigma=3,
        measurement=keras.losses.binary_crossentropy):
    """ Apply metric or loss measurement incorporating a 2D gaussian.

        Only works with batch size 1.
        Loop and call this function repeatedly over each sample
        to use a larger batch size.

    # Arguments

        y_true: is assumed to be [label, x_img_coord, y_image_coord]
        y_pred: is expected to be a 2D array of labels
            with shape [1, img_height, img_width, 1].
    """
    with K.name_scope(name='grasp_segmentation_gaussian_loss') as scope:
        if keras.backend.ndim(y_true) == 4:
            # sometimes the dimensions are expanded from 2 to 4
            # to meet Keras' expectations.
            # In that case reduce them back to 2
            y_true = K.squeeze(y_true, axis=-1)
            y_true = K.squeeze(y_true, axis=-1)
        print('y_pred: ', y_pred)
        print('y_true: ', y_true)
        # y_true should have shape [batch_size, 3] here,
        # label, y_height_coordinate, x_width_coordinate become shape:
        # [batch_size, 1]
        label = K.expand_dims(y_true[:, 0])
        print('label: ', label)
        y_height_coordinate = K.expand_dims(y_true[:, 1])
        x_width_coordinate = K.expand_dims(y_true[:, 2])
        # label = K.reshape(label, [1, 1])
        print('label: ', label)
        image_shape = tf.Tensor.get_shape(y_pred)
        y_true_img = tile_vector_as_image_channels(label, image_shape)
        y_true_img = K.cast(y_true_img, 'float32')
        loss_img = measurement(y_true_img, y_pred)
        y_pred_shape = K.int_shape(y_pred)
        if len(y_pred_shape) == 3:
            y_pred_shape = y_pred_shape[:-1]
        if len(y_pred_shape) == 4:
            y_pred_shape = y_pred_shape[1:3]

        def batch_gaussian(one_y_true):
        # def batch_gaussian(y_height_coord, x_width_coord):
            # weights = gaussian_kernel_2D(size=y_pred_shape, center=(y_height_coord, x_width_coord), sigma=gaussian_sigma)
            # weights = gaussian_kernel_2D(size=y_pred_shape, center=(y_height_coordinate, x_width_coordinate), sigma=gaussian_sigma)
            return gaussian_kernel_2D(size=y_pred_shape, center=(one_y_true[0], one_y_true[1]), sigma=gaussian_sigma)
        weights = K.map_fn(batch_gaussian, y_true)
        loss_img = K.flatten(loss_img)
        weights = K.flatten(weights)
        weighted_loss_img = tf.multiply(loss_img, weights)
        loss_sum = K.sum(weighted_loss_img)
        loss_sum = K.reshape(loss_sum, [1, 1])
        return loss_sum 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:59,代碼來源:grasp_loss.py

示例11: cifar10_load_data

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def cifar10_load_data(datadir=None):
    '''Loads CIFAR10 dataset.

    Returns
        Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
    '''

    if datadir is None:
        return cifar10.load_data()

    dirname = 'cifar-10-batches-py'
    # origin = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
    # path = get_file(dirname, origin=origin, untar=True)
    path_ = os.path.join(datadir, dirname)

    num_train_samples = 50000

    x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8')
    y_train = np.zeros((num_train_samples,), dtype='uint8')

    for ii in range(1, 6):
        fpath = os.path.join(path_, 'data_batch_' + str(ii))
        data, labels = cifar10.load_batch(fpath)
        x_train[(ii - 1) * 10000: ii * 10000, :, :, :] = data
        y_train[(ii - 1) * 10000: ii * 10000] = labels

    fpath = os.path.join(path_, 'test_batch')
    x_test, y_test = cifar10.load_batch(fpath)

    y_train = np.reshape(y_train, (len(y_train), 1))
    y_test = np.reshape(y_test, (len(y_test), 1))

    if KB.image_data_format() == 'channels_last':
        x_train = x_train.transpose(0, 2, 3, 1)
        x_test = x_test.transpose(0, 2, 3, 1)

    return (x_train, y_train), (x_test, y_test)


# def stand_img(xin):
#     '''Use as: model.add(KL.Lambda(stand_img))
#     Seems to make the code run very slow. Pre-processing the data is faster.
#     '''
#     # KB.map_fn(fn, elems, name, dtype)  # maybe KB.map_fn also works.
#     with tf.device(xin.device):
#         img_std = tf.map_fn(tf.image.per_image_standardization, xin)
#
#     return img_std 
開發者ID:avolkov1,項目名稱:keras_experiments,代碼行數:50,代碼來源:cifar_common.py

示例12: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import map_fn [as 別名]
def call(self, inputs):
        if self.r_num == 1:
            outputs = K.dot(K.reshape(inputs, (-1, self.ch_i * self.n_i)),
                            K.reshape(self.w, (self.ch_i * self.n_i,
                                               self.ch_j * self.n_j)))
            outputs = squeeze(K.reshape(outputs, (-1, self.ch_j, self.n_j)))
        else:
            wr = K.reshape(self.w, (self.ch_i, self.n_i, self.ch_j * self.n_j))

            u = tf.transpose(tf.matmul(tf.transpose(inputs, [1, 0, 2]), wr), [1, 0, 2])

            u = K.reshape(u, (-1, self.ch_i, self.ch_j, self.n_j))

            def rt(ub):
                ub = K.reshape(ub, (-1, self.ch_i, self.ch_j, self.n_j))
                ub_wo_g = K.stop_gradient(ub)
                b = 0.0
                for r in range(self.r_num):
                    if r > 0:
                        c = K.expand_dims(K.softmax(b * self.b_alphas[r])) * self.ch_j  # distribution of weighs of capsules in I across capsules in J
                        c = K.stop_gradient(c)
                    else:
                        c = 1.0

                    if r == self.r_num - 1:
                        cub = c * ub
                    else:
                        cub = c * ub_wo_g
                    s = K.sum(cub, axis=-3)  # vectors of capsules in J
                    v = squeeze(s)  # squeezed vectors of capsules in J
                    if r == self.r_num - 1:
                        break

                    v = K.stop_gradient(v)

                    a = tf.einsum('bjk,bijk->bij', v, ub)  # a = v dot u
                    # a = K.matmul(K.reshape(v, (-1, 1, J, 1, n_j)),
                    #             K.reshape(u, (-1, I, J, n_j, 1))).reshape((-1, I, J))

                    b = b + a  # increase those b[i,j] where v[j] dot b[i,j] is larger
                return v

            u = K.reshape(u, (-1, self.ch_i * self.ch_j * self.n_j))

            global useGPU

            if useGPU:
                outputs = rt(u)
            else:
                outputs = tf.map_fn(rt, u,
                                    parallel_iterations=100, back_prop=True,
                                    infer_shape=False)

            outputs = K.reshape(outputs, (-1, self.ch_j, self.n_j))

        return outputs 
開發者ID:brjathu,項目名稱:deepcaps,代碼行數:58,代碼來源:capslayers.py


注:本文中的keras.backend.map_fn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。