當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.image_data_format方法代碼示例

本文整理匯總了Python中keras.backend.image_data_format方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.image_data_format方法的具體用法?Python backend.image_data_format怎麽用?Python backend.image_data_format使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.image_data_format方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def call(self, inputs):

        if self.data_format is None:
            data_format = image_data_format()
        if self.data_format not in {'channels_first', 'channels_last'}:
            raise ValueError('Unknown data_format ' + str(data_format))

        x = _preprocess_conv2d_input(inputs, self.data_format)
        padding = _preprocess_padding(self.padding)
        strides = (1,) + self.strides + (1,)

        outputs = tf.nn.depthwise_conv2d(inputs, self.depthwise_kernel,
                                         strides=strides,
                                         padding=padding,
                                         rate=self.dilation_rate)

        if self.bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:rcmalli,項目名稱:keras-mobilenet,代碼行數:27,代碼來源:depthwise_conv2d.py

示例2: _conv_block

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def _conv_block(inputs, filters, kernel, strides=1, padding='same', use_activation=False):
    """Convolution Block
    This function defines a 2D convolution operation with BN and relu.
    # Arguments
        inputs: Tensor, input tensor of conv layer.
        filters: Integer, the dimensionality of the output space.
        kernel: An integer or tuple/list of 2 integers, specifying the
            width and height of the 2D convolution window.
        strides: An integer or tuple/list of 2 integers,
            specifying the strides of the convolution along the width and height.
            Can be a single integer to specify the same value for
            all spatial dimensions.
    # Returns
        Output tensor.
    """
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(filters, kernel, padding=padding, strides=strides,
               use_bias=False)(inputs)
    x = BatchNormalization(axis=channel_axis)(x)

    if use_activation:
        x = Activation('relu')(x)

    return x 
開發者ID:JACKYLUO1991,項目名稱:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代碼行數:27,代碼來源:hlnet.py

示例3: _initial_conv_block_inception

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def _initial_conv_block_inception(input, initial_conv_filters, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the DPN
    Args:
        input: input tensor
        initial_conv_filters: number of filters for initial conv block
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = Activation('relu')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
開發者ID:titu1994,項目名稱:Keras-DualPathNetworks,代碼行數:20,代碼來源:dual_path_network.py

示例4: _bn_relu_conv_block

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def _bn_relu_conv_block(input, filters, kernel=(3, 3), stride=(1, 1), weight_decay=5e-4):
    ''' Adds a Batchnorm-Relu-Conv block for DPN
    Args:
        input: input tensor
        filters: number of output filters
        kernel: convolution kernel size
        stride: stride of convolution
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(filters, kernel, padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=stride)(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = Activation('relu')(x)
    return x 
開發者ID:titu1994,項目名稱:Keras-DualPathNetworks,代碼行數:18,代碼來源:dual_path_network.py

示例5: deprocess_image

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def deprocess_image(x):
    # normalize tensor: center on 0., ensure std is 0.1
    x -= x.mean()
    x /= (x.std() + K.epsilon())
    x *= 0.1

    # clip to [0, 1]
    x += 0.5
    x = np.clip(x, 0, 1)

    # convert to RGB array
    x *= 255
    if K.image_data_format() == 'channels_first':
        x = x.transpose((1, 2, 0))
    x = np.clip(x, 0, 255).astype('uint8')
    return x 
開發者ID:xyj77,項目名稱:MCF-3D-CNN,代碼行數:18,代碼來源:conv_featuremaps_visualization.py

示例6: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def __init__(self, target_shape=None,factor=None, data_format=None, **kwargs):
        # conmpute dataformat
        if data_format is None:
            data_format = K.image_data_format()
        assert data_format in {
            'channels_last', 'channels_first'}

        self.data_format = data_format
        self.input_spec = [InputSpec(ndim=4)]
        self.target_shape = target_shape
        self.factor = factor
        if self.data_format == 'channels_first':
            self.target_size = (target_shape[2], target_shape[3])
        elif self.data_format == 'channels_last':
            self.target_size = (target_shape[1], target_shape[2])
        super(BilinearUpSampling2D, self).__init__(**kwargs) 
開發者ID:dhkim0225,項目名稱:keras-image-segmentation,代碼行數:18,代碼來源:pspnet.py

示例7: duc

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def duc(x, factor=8, output_shape=(512, 512, 1)):
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    H, W, c, r = output_shape[0], output_shape[1], output_shape[2], factor
    h = H / r
    w = W / r
    x = Conv2D(
            c*r*r,
            (3, 3),
            padding='same',
            name='conv_duc_%s'%factor)(x)
    x = BatchNormalization(axis=bn_axis,name='bn_duc_%s'%factor)(x)
    x = Activation('relu')(x)
    x = Permute((3, 1, 2))(x)
    x = Reshape((c, r, r, h, w))(x)
    x = Permute((1, 4, 2, 5, 3))(x)
    x = Reshape((c, H, W))(x)
    x = Permute((2, 3, 1))(x)

    return x


# interpolation 
開發者ID:dhkim0225,項目名稱:keras-image-segmentation,代碼行數:27,代碼來源:pspnet.py

示例8: __initial_conv_block_inception

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def __initial_conv_block_inception(input_tensor, weight_decay=5e-4):
    """ Adds an initial conv block, with batch norm and relu for the inception resnext
    Args:
        input_tensor: input Keras tensor
        weight_decay: weight decay factor
    Returns: a Keras tensor
    """
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(64, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input_tensor)
    x = BatchNormalization(axis=channel_axis)(x)
    x = LeakyReLU()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
開發者ID:titu1994,項目名稱:keras-squeeze-excite-network,代碼行數:19,代碼來源:se_resnext.py

示例9: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def __init__(self, file, image_size, image_data_generator,
                 batch_size=32, shuffle=False, seed=None,
                 data_format=None,
                 save_to_dir=None, save_prefix='', save_format='png'):
        if not os.path.exists(file):
            raise ValueError('Cannot find file: %s' % file)

        if data_format is None:
            data_format = K.image_data_format()

        split_lines = [line.rstrip('\n').split(' ') for line in open(file, 'r')]
        self.x = np.asarray([e[0] for e in split_lines])
        self.y = np.asarray([float(e[1]) for e in split_lines])
        self.image_size = image_size
        self.image_data_generator = image_data_generator
        self.data_format = data_format
        self.save_to_dir = save_to_dir
        self.save_prefix = save_prefix
        self.save_format = save_format
        super(FileIterator, self).__init__(self.x.shape[0], batch_size, shuffle, seed) 
開發者ID:mengli,項目名稱:MachineLearning,代碼行數:22,代碼來源:my_image.py

示例10: fire_module

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def fire_module(x, fire_id, squeeze=16, expand=64):
    s_id = 'fire' + str(fire_id) + '/'

    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = 3
    
    x = Conv2D(squeeze, (1, 1), padding='valid', name=s_id + sq1x1)(x)
    x = Activation('relu', name=s_id + relu + sq1x1)(x)

    left = Conv2D(expand, (1, 1), padding='valid', name=s_id + exp1x1)(x)
    left = Activation('relu', name=s_id + relu + exp1x1)(left)

    right = Conv2D(expand, (3, 3), padding='same', name=s_id + exp3x3)(x)
    right = Activation('relu', name=s_id + relu + exp3x3)(right)

    x = concatenate([left, right], axis=channel_axis, name=s_id + 'concat')
    return x


# Original SqueezeNet from paper. 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-with-TensorFlow-Second-Edition,代碼行數:24,代碼來源:squeezenet.py

示例11: __transition_block

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
    Args:
        ip: keras tensor
        nb_filter: number of filters
        compression: calculated as 1 - reduction. Reduces the number of feature maps
                    in the transition block.
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    # global context block
    x = global_context_block(x)

    return x 
開發者ID:titu1994,項目名稱:keras-global-context-networks,代碼行數:25,代碼來源:gc_densenet.py

示例12: get_data_generator

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def get_data_generator(data_iterator,
                       num_classes):
    def get_arrays(db):
        data = db.data[0].asnumpy()
        if K.image_data_format() == "channels_last":
            data = data.transpose((0, 2, 3, 1))
        labels = to_categorical(
            y=db.label[0].asnumpy(),
            num_classes=num_classes)
        return data, labels

    while True:
        try:
            db = data_iterator.next()

        except StopIteration:
            # logging.warning("get_data exception due to end of data - resetting iterator")
            data_iterator.reset()
            db = data_iterator.next()

        finally:
            yield get_arrays(db) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:24,代碼來源:utils.py

示例13: get_realpart

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def get_realpart(x):
    image_format = K.image_data_format()
    ndim = K.ndim(x)
    input_shape = K.shape(x)

    if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
        input_dim = input_shape[1] // 2
        return x[:, :input_dim]

    input_dim = input_shape[-1] // 2
    if ndim == 3:
        return x[:, :, :input_dim]
    elif ndim == 4:
        return x[:, :, :, :input_dim]
    elif ndim == 5:
        return x[:, :, :, :, :input_dim] 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:18,代碼來源:utils.py

示例14: get_imagpart

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def get_imagpart(x):
    image_format = K.image_data_format()
    ndim = K.ndim(x)
    input_shape = K.shape(x)

    if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
        input_dim = input_shape[1] // 2
        return x[:, input_dim:]

    input_dim = input_shape[-1] // 2
    if ndim == 3:
        return x[:, :, input_dim:]
    elif ndim == 4:
        return x[:, :, :, input_dim:]
    elif ndim == 5:
        return x[:, :, :, :, input_dim:] 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:18,代碼來源:utils.py

示例15: compute_error_matrix

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import image_data_format [as 別名]
def compute_error_matrix(y_true, y_pred):
    """Compute Confusion matrix (a.k.a. error matrix).

    a       predicted
    c       0   1   2
    t  0 [[ 5,  3,  0],
    u  1  [ 2,  3,  1],
    a  2  [ 0,  2, 11]]
    l

    Note true positves are in diagonal
    """
    # Find channel axis given backend
    if K.image_data_format() == 'channels_last':
        ax_chn = 3
    else:
        ax_chn = 1
    classes = y_true.shape[ax_chn]
    confusion = get_confusion(K.argmax(y_true, axis=ax_chn).flatten(),
                              K.argmax(y_pred, axis=ax_chn).flatten(),
                              classes)
    return confusion 
開發者ID:JihongJu,項目名稱:keras-fcn,代碼行數:24,代碼來源:score.py


注:本文中的keras.backend.image_data_format方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。