當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.backend方法代碼示例

本文整理匯總了Python中keras.backend方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.backend方法的具體用法?Python keras.backend怎麽用?Python keras.backend使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.backend方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: on_epoch_end

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def on_epoch_end(self, epoch, logs={}):
        self.losses += [logs.get('val_loss')]
        if not self.losses[-1] < self.min_loss:
            self.steps = self.steps + 1
        else:
            self.steps = 0
        if self.steps > self.convergence_steps:
            lr = keras.backend.get_value(self.model.optimizer.lr)
            keras.backend.set_value(
                self.model.optimizer.lr, lr / self.lr_decay)
            self.steps = 0
            logger.info("\n Reduced learning rate to " + str(lr))

            if lr < self.lr_minimum:
                self.model.stop_training = True

        self.min_loss = min(self.min_loss, self.losses[-1])

################################################################################
# QRNN
################################################################################ 
開發者ID:atmtools,項目名稱:typhon,代碼行數:23,代碼來源:qrnn.py

示例2: __init__

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def __init__(self, mode, config, model_dir):
        """
        mode: Either "training" or "inference"
        config: A Sub-class of the Config class
        model_dir: Directory to save training logs and trained weights
        """
        assert mode in ['training', 'inference']
        if mode == 'training':
            import keras.backend.tensorflow_backend as KTF
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            session = tf.Session(config=config)
            KTF.set_session(session)
        self.mode = mode
        self.config = config
        self.model_dir = model_dir
        self.set_log_dir()
        self.keras_model = self.build(mode=mode, config=config) 
開發者ID:SunskyF,項目名稱:EasyPR-python,代碼行數:20,代碼來源:model.py

示例3: preres_activation

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def preres_activation(x,
                      name="preres_activation"):
    """
    PreResNet pure pre-activation block without convolution layer. It's used by itself as the final block.

    Parameters:
    ----------
    x : keras.backend tensor/variable/symbol
        Input tensor/variable/symbol.
    name : str, default 'preres_activation'
        Block name.

    Returns
    -------
    keras.backend tensor/variable/symbol
        Resulted tensor/variable/symbol.
    """
    x = batchnorm(
        x=x,
        name=name + "/bn")
    x = nn.Activation("relu", name=name + "/activ")(x)
    return x 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:24,代碼來源:preresnet.py

示例4: compile

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def compile(self):
        """
        Compile model for training.

        Only `keras` native metrics are compiled together with backend.
        MatchZoo metrics are evaluated only through :meth:`evaluate`.
        Notice that `keras` count `loss` as one of the metrics while MatchZoo
        :class:`matchzoo.engine.BaseTask` does not.

        Examples:
            >>> from matchzoo import models
            >>> model = models.Naive()
            >>> model.guess_and_fill_missing_params(verbose=0)
            >>> model.params['task'].metrics = ['mse', 'map']
            >>> model.params['task'].metrics
            ['mse', mean_average_precision(0.0)]
            >>> model.build()
            >>> model.compile()

        """
        self._backend.compile(optimizer=self._params['optimizer'],
                              loss=self._params['task'].loss) 
開發者ID:NTMC-Community,項目名稱:MatchZoo,代碼行數:24,代碼來源:base_model.py

示例5: __call__

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def __call__(self, inputs):
        if not isinstance(inputs, (list, tuple)):
            raise TypeError('`inputs` should be a list or tuple.')
        feed_dict = self.feed_dict.copy()
        for tensor, value in zip(self.inputs, inputs):
            if is_sparse(tensor):
                sparse_coo = value.tocoo()
                indices = np.concatenate((np.expand_dims(sparse_coo.row, 1),
                                          np.expand_dims(sparse_coo.col, 1)), 1)
                value = (indices, sparse_coo.data, sparse_coo.shape)
            feed_dict[tensor] = value
        fetches = self.outputs + [self.updates_op] + self.fetches
        session = get_session()
        updated = session.run(fetches=fetches, feed_dict=feed_dict,
                              **self.session_kwargs)
        return updated


# function_get_fetches adapted from function() in K.backend.tensorflow_backend 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:21,代碼來源:keras_workaround.py

示例6: function_get_fetches

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def function_get_fetches(inputs, outputs, updates=None, **kwargs):
    """Instantiates a Keras function.

    # Arguments
        inputs: List of placeholder tensors.
        outputs: List of output tensors.
        updates: List of update ops.
        **kwargs: Passed to `tf.Session.run`.

    # Returns
        Output values as Numpy arrays.

    # Raises
        ValueError: if invalid kwargs are passed in.
    """
    if kwargs:
        for key in kwargs:
            if not (has_arg(tf.Session.run, key, True) or has_arg(Function.__init__, key, True)):
                msg = 'Invalid argument "%s" passed to K.function with TensorFlow backend' % key
                raise ValueError(msg)
    return FunctionGetFetches(inputs, outputs, updates=updates, **kwargs)


# _make_predict_function_get_fetches adapted from _make_predict_function() in K.backend.tensorflow_backend 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:26,代碼來源:keras_workaround.py

示例7: crf_loss

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def crf_loss(y_true, y_pred):
    """General CRF loss function depending on the learning mode.
    # Arguments
        y_true: tensor with true targets.
        y_pred: tensor with predicted targets.
    # Returns
        If the CRF layer is being trained in the join mode, returns the negative
        log-likelihood. Otherwise returns the categorical crossentropy implemented
        by the underlying Keras backend.
    # About GitHub
        If you open an issue or a pull request about CRF, please
        add `cc @lzfelix` to notify Luiz Felix.
    """
    crf, idx = y_pred._keras_history[:2]
    if crf.learn_mode == 'join':
        return crf_nll(y_true, y_pred)
    else:
        if crf.sparse_target:
            return sparse_categorical_crossentropy(y_true, y_pred)
        else:
            return categorical_crossentropy(y_true, y_pred)

# crf_marginal_accuracy, crf_viterbi_accuracy 
開發者ID:yongzhuo,項目名稱:nlp_xiaojiang,代碼行數:25,代碼來源:keras_bert_layer.py

示例8: assert_save_load

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def assert_save_load(self, model, metrics_fns, samples_fn):
        metrics = [m() for m in metrics_fns]

        custom_objects = {m.__name__: m for m in metrics}
        custom_objects["sin"] = keras.backend.sin
        custom_objects["abs"] = keras.backend.abs

        x, y = samples_fn(100)
        model.fit(x, y, epochs=10)

        with tempfile.NamedTemporaryFile() as file:
            model.save(file.name, overwrite=True)

            loaded_model = keras.models.load_model(
                file.name, custom_objects=custom_objects)

            expected = model.evaluate(x, y)[1:]
            received = loaded_model.evaluate(x, y)[1:]

            self.assertEqual(expected, received) 
開發者ID:netrack,項目名稱:keras-metrics,代碼行數:22,代碼來源:test_metrics.py

示例9: _sort_weights_by_name

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def _sort_weights_by_name(self, weights):
        """Sorts weights by name and returns them."""

        if not weights:
            return []

        if K.backend() == 'theano':
            key = lambda x: x.name if x.name else x.auto_name
        else:
            key = lambda x: x.name

        weights.sort(key=key)
        return weights 
開發者ID:codekansas,項目名稱:gandlf,代碼行數:15,代碼來源:models.py

示例10: start_keras

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def start_keras(logger, job_backend):
    if 'KERAS_BACKEND' not in os.environ:
        os.environ['KERAS_BACKEND'] = 'tensorflow'

    from . import keras_model_utils

    # we need to import keras here, so we know which backend is used (and whether GPU is used)
    os.chdir(job_backend.git.work_tree)
    logger.debug("Start simple model")

    # we use the source from the job commit directly
    with job_backend.git.batch_commit('Git Version'):
        job_backend.set_system_info('git_remote_url', job_backend.git.get_remote_url('origin'))
        job_backend.set_system_info('git_version', job_backend.git.job_id)

    # all our shapes are Tensorflow schema. (height, width, channels)
    import keras.backend
    if hasattr(keras.backend, 'set_image_dim_ordering'):
        keras.backend.set_image_dim_ordering('tf')

    if hasattr(keras.backend, 'set_image_data_format'):
        keras.backend.set_image_data_format('channels_last')

    from .KerasCallback import KerasCallback
    trainer = Trainer(job_backend)
    keras_logger = KerasCallback(job_backend, job_backend.logger)

    job_backend.progress(0, job_backend.job['config']['epochs'])

    logger.info("Start training")
    keras_model_utils.job_start(job_backend, trainer, keras_logger)

    job_backend.done() 
開發者ID:aetros,項目名稱:aetros-cli,代碼行數:35,代碼來源:starter.py

示例11: on_signusr1

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def on_signusr1(self, signal, frame):
        self.logger.warning("USR1: backend job_id=%s (running=%s, ended=%s), client (online=%s, active=%s, registered=%s, "
                            "connected=%s, queue=%s), git (active_thread=%s, last_push_time=%s)." % (
          str(self.job_id),
          str(self.running),
          str(self.ended),
          str(self.client.online),
          str(self.client.active),
          str(self.client.registered),
          str(self.client.connected),
          str([str(i)+':'+str(len(x)) for i, x in six.iteritems(self.client.queues)]),
          str(self.git.active_thread),
          str(self.git.last_push_time),
        )) 
開發者ID:aetros,項目名稱:aetros-cli,代碼行數:16,代碼來源:backend.py

示例12: is_master_process

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def is_master_process(self):
        """
        Master means that aetros.backend.start_job() has been called without using the command `aetros start`.
        If master is true, we collect and track some data that usually `aetros start` would do and reset the job's
        temp files on the server.
        :return:
        """

        return os.getenv('AETROS_JOB_ID') is None 
開發者ID:aetros,項目名稱:aetros-cli,代碼行數:11,代碼來源:backend.py

示例13: sync_weights

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def sync_weights(self, push=True):

        if not os.path.exists(self.get_job_model().get_weights_filepath_latest()):
            return

        self.logger.debug("sync weights...")
        self.set_status('SYNC WEIGHTS', add_section=False)

        with open(self.get_job_model().get_weights_filepath_latest(), 'rb') as f:
            import keras.backend
            self.git.commit_file('Added weights', 'aetros/weights/latest.hdf5', f.read())

            image_data_format = None
            if hasattr(keras.backend, 'set_image_data_format'):
                image_data_format = keras.backend.image_data_format()

            info = {
                'framework': 'keras',
                'backend': keras.backend.backend(),
                'image_data_format': image_data_format
            }
            self.git.commit_file('Added weights', 'aetros/weights/latest.json', simplejson.dumps(info))
            if push:
                self.git.push()

        # todo, implement optional saving of self.get_job_model().get_weights_filepath_best() 
開發者ID:aetros,項目名稱:aetros-cli,代碼行數:28,代碼來源:backend.py

示例14: batch_eval

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def batch_eval(sess, tf_inputs, tf_outputs, numpy_inputs):
    """
    A helper function that computes a tensor on numpy inputs by batches.
    """
    n = len(numpy_inputs)
    assert n > 0
    assert n == len(tf_inputs)
    m = numpy_inputs[0].shape[0]
    for i in six.moves.xrange(1, n):
        assert numpy_inputs[i].shape[0] == m
    out = []
    for _ in tf_outputs:
        out.append([])
    with sess.as_default():
        for start in six.moves.xrange(0, m, FLAGS.batch_size):
            batch = start // FLAGS.batch_size
            if batch % 100 == 0 and batch > 0:
                print("Batch " + str(batch))

            # Compute batch start and end indices
            start = batch * FLAGS.batch_size
            end = start + FLAGS.batch_size
            numpy_input_batches = [numpy_input[start:end] for numpy_input in numpy_inputs]
            cur_batch_size = numpy_input_batches[0].shape[0]
            assert cur_batch_size <= FLAGS.batch_size
            for e in numpy_input_batches:
                assert e.shape[0] == cur_batch_size

            feed_dict = dict(zip(tf_inputs, numpy_input_batches))
            feed_dict[keras.backend.learning_phase()] = 0
            numpy_output_batches = sess.run(tf_outputs, feed_dict=feed_dict)
            for e in numpy_output_batches:
                assert e.shape[0] == cur_batch_size, e.shape
            for out_elem, numpy_output_batch in zip(out, numpy_output_batches):
                out_elem.append(numpy_output_batch)

    out = [np.concatenate(x, axis=0) for x in out]
    for e in out:
        assert e.shape[0] == m, e.shape
    return out 
開發者ID:YingzhenLi,項目名稱:Dropout_BBalpha,代碼行數:42,代碼來源:utils_tf.py

示例15: model_argmax

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import backend [as 別名]
def model_argmax(sess, x, predictions, sample):
    """
    Helper function that computes the current class prediction
    :param sess: TF session
    :param x: the input placeholder
    :param predictions: the model's symbolic output
    :param sample: (1 x 1 x img_rows x img_cols) numpy array with sample input
    :return: the argmax output of predictions, i.e. the current predicted class
    """

    feed_dict = {x: sample, keras.backend.learning_phase(): 0}
    probabilities = sess.run(predictions, feed_dict)

    return np.argmax(probabilities) 
開發者ID:YingzhenLi,項目名稱:Dropout_BBalpha,代碼行數:16,代碼來源:utils_tf.py


注:本文中的keras.backend方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。