本文整理匯總了Python中keras.backend.gradients方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.gradients方法的具體用法?Python backend.gradients怎麽用?Python backend.gradients使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.gradients方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generate_pattern
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def generate_pattern(layer_name, filter_index, size=150):
# 過濾器可視化函數
layer_output = model.get_layer(layer_name).output
loss = K.mean(layer_output[:, :, :, filter_index])
grads = K.gradients(loss, model.input)[0]
grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
iterate = K.function([model.input], [loss, grads])
input_img_data = np.random.random((1, size, size, 3)) * 20 + 128.
step = 1
for _ in range(40):
loss_value, grads_value = iterate([input_img_data])
input_img_data += grads_value * step
img = input_img_data[0]
return deprocess_image(img)
示例2: reverse_generator
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def reverse_generator(generator, X_sample, y_sample, title):
"""Gradient descent to map images back to their latent vectors."""
latent_vec = np.random.normal(size=(1, 100))
# Function for figuring out how to bump the input.
target = K.placeholder()
loss = K.sum(K.square(generator.outputs[0] - target))
grad = K.gradients(loss, generator.inputs[0])[0]
update_fn = K.function(generator.inputs + [target], [grad])
# Repeatedly apply the update rule.
xs = []
for i in range(60):
print('%d: latent_vec mean=%f, std=%f'
% (i, np.mean(latent_vec), np.std(latent_vec)))
xs.append(generator.predict_on_batch([latent_vec, y_sample]))
for _ in range(10):
update_vec = update_fn([latent_vec, y_sample, X_sample])[0]
latent_vec -= update_vec * update_rate
# Plots the samples.
xs = np.concatenate(xs, axis=0)
plot_as_gif(xs, X_sample, title)
示例3: gradient_penalty_loss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def gradient_penalty_loss(self, y_true, y_pred, averaged_samples):
"""
Computes gradient penalty based on prediction and weighted real / fake samples
"""
gradients = K.gradients(y_pred, averaged_samples)[0]
# compute the euclidean norm by squaring ...
gradients_sqr = K.square(gradients)
# ... summing over the rows ...
gradients_sqr_sum = K.sum(gradients_sqr,
axis=np.arange(1, len(gradients_sqr.shape)))
# ... and sqrt
gradient_l2_norm = K.sqrt(gradients_sqr_sum)
# compute lambda * (1 - ||grad||)^2 still for each single sample
gradient_penalty = K.square(1 - gradient_l2_norm)
# return the mean as loss over all the batch samples
return K.mean(gradient_penalty)
示例4: predictions_and_gradient
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def predictions_and_gradient(self, image, criterion):
""" Returns both predictions and gradients, and
potentially loss w.r.t. to certain criterion.
"""
input_shape = image.shape
px, dpdx = self._process_input(image)
if isinstance(criterion, TargetClassMiss) or \
isinstance(criterion, RegionalTargetClassMiss):
boxes, scores, classes, loss, gradient =\
self._tgt_cls_pred_and_grad_fn(
[px[np.newaxis], criterion.target_class()])
else:
raise NotImplementedError
prediction = {}
num = (scores[0] > 0.).sum()
prediction['boxes'] = boxes[0][:num].tolist()
prediction['scores'] = scores[0][:num].tolist()
prediction['classes'] = classes[0][:num].tolist()
gradient = self._process_gradient(dpdx, gradient)
assert gradient.shape == input_shape
return prediction, loss, gradient,
示例5: loss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def loss(self, y_true, y_pred):
# get the value for the true and fake images
disc_true = self.disc(y_true)
disc_pred = self.disc(y_pred)
# sample a x_hat by sampling along the line between true and pred
# z = tf.placeholder(tf.float32, shape=[None, 1])
# shp = y_true.get_shape()[0]
# WARNING: SHOULD REALLY BE shape=[batch_size, 1] !!!
# self.batch_size does not work, since it's not None!!!
alpha = K.random_uniform(shape=[K.shape(y_pred)[0], 1, 1, 1])
diff = y_pred - y_true
interp = y_true + alpha * diff
# take gradient of D(x_hat)
gradients = K.gradients(self.disc(interp), [interp])[0]
grad_pen = K.mean(K.square(K.sqrt(K.sum(K.square(gradients), axis=1))-1))
# compute loss
return (K.mean(disc_pred) - K.mean(disc_true)) + self.lambda_gp * grad_pen
示例6: query
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def query(self, context):
x0, x0context = helper.find_closest_positive_context_param(
context, self.xx, self.yy, self.func.param_idx, self.func.context_idx)
g = kb.gradients(self.model.outputs[0], self.model.inputs)
gfn = kb.function(self.model.inputs, g)
def fn(param):
x = np.hstack((param, np.tile(context, (param.shape[0], 1))))
return -self.model.predict(x).astype(np.float64)
def fgfn(param):
x = np.hstack((param, context))
return -self.model.predict(np.array([x]))[0].astype(np.float64), \
-gfn([np.array([x])])[0][0,
self.func.param_idx].astype(np.float64)
x_range = self.func.x_range
guesses = helper.grid_around_point(
x0, 0.5*(x_range[1]-x_range[0]), 5, x_range)
x_star, y_star = helper.global_minimize(
fn, fgfn, x_range[:, self.func.param_idx], 10000, guesses)
print('x_star={}, y_star={}'.format(x_star, y_star))
return np.hstack((x_star, context))
示例7: fgsm
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def fgsm(model, inp, pad_idx, pad_len, e, step_size=0.001):
adv = inp.copy()
loss = K.mean(model.output[:, 0])
grads = K.gradients(loss, model.layers[1].output)[0]
grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-8)
mask = np.zeros(model.layers[1].output.shape[1:]) # embedding layer output shape
mask[pad_idx:pad_idx+pad_len] = 1
grads *= K.constant(mask)
iterate = K.function([model.layers[1].output], [loss, grads])
g = 0.
step = int(1/step_size)*10
for _ in range(step):
loss_value, grads_value = iterate([adv])
grads_value *= step_size
g += grads_value
adv += grads_value
#print (e, loss_value, end='\r')
if loss_value >= 0.9:
break
return adv, g, loss_value
示例8: fgsm
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def fgsm(model, inp, pad_idx, pad_len, e, step_size=0.001, target_class=1):
adv = inp.copy()
loss = K.mean(model.output[:, target_class])
grads = K.gradients(loss, model.layers[1].output)[0]
grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-8)
mask = np.zeros(model.layers[1].output.shape[1:]) # embedding layer output shape
mask[pad_idx:pad_idx+pad_len] = 1
grads *= K.constant(mask)
iterate = K.function([model.layers[1].output], [loss, grads])
g = 0.
step = int(1/step_size)*10
for _ in range(step):
loss_value, grads_value = iterate([adv])
grads_value *= step_size
g += grads_value
adv += grads_value
#print (e, loss_value, grads_value.mean(), end='\r')
if loss_value >= 0.9:
break
return adv, g, loss_value
示例9: render_naive
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def render_naive(layer_name, filter_index, img0=img_noise, iter_n=20, step=1.0):
if layer_name not in layer_dict:
print("ERROR: invalid layer name: %s" % layer_name)
return
layer = layer_dict[layer_name]
print("{} < {}".format(filter_index, layer.output_shape[-1]))
activation = K.mean(layer.output[:, :, :, filter_index])
grads = K.gradients(activation, input_tensor)[0]
# DropoutやBNを含むネットワークはK.learning_phase()が必要
iterate = K.function([input_tensor, K.learning_phase()], [activation, grads])
img = img0.copy()
for i in range(iter_n):
# 學習はしないので0を入力
activation_value, grads_value = iterate([img, 0])
grads_value /= K.std(grads_value) + 1e-8
img += grads_value * step
print(i, activation_value)
示例10: eval_loss_and_grads
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def eval_loss_and_grads(x):
if K.image_data_format() == 'channels_first':
x = x.reshape((1, 3, img_nrows, img_ncols))
else:
x = x.reshape((1, img_nrows, img_ncols, 3))
outs = f_outputs([x])
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
# this Evaluator class makes it possible
# to compute loss and gradients in one pass
# while retrieving them via two separate functions,
# "loss" and "grads". This is done because scipy.optimize
# requires separate functions for loss and gradients,
# but computing them separately would be inefficient.
示例11: eval_loss_and_grads
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def eval_loss_and_grads(x):
x = x.reshape((1,) + img_size)
outs = f_outputs([x])
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
# this Evaluator class makes it possible
# to compute loss and gradients in one pass
# while retrieving them via two separate functions,
# "loss" and "grads". This is done because scipy.optimize
# requires separate functions for loss and gradients,
# but computing them separately would be inefficient.
示例12: _rmsprop
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def _rmsprop(self, grads, cache=None, decay_rate=0.95):
"""Uses RMSProp to compute step from gradients.
Args:
grads: numpy array of gradients.
cache: numpy array of same shape as `grads` as RMSProp cache
decay_rate: How fast to decay cache
Returns:
A tuple of
step: numpy array of the same shape as `grads` giving the step.
Note that this does not yet take the learning rate into account.
cache: Updated RMSProp cache.
"""
if cache is None:
cache = np.zeros_like(grads)
cache = decay_rate * cache + (1 - decay_rate) * grads ** 2
step = -grads / np.sqrt(cache + K.epsilon())
return step, cache
示例13: gram_loss_callable
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def gram_loss_callable(gram_model, target_grams, shape):
''' Returns a function which takes in an image and outputs both the gram-matrix
loss of that image relative to the targets, and the gradients of that loss with respect
to the image pixels'''
loss = diff_loss(gram_model, target_grams)
gradients = K.gradients(loss, gram_model.input)
if keras.backend.backend() == 'tensorflow':
gradients = gradients[0] # This is a Keras inconsistency between theano and tf backends
loss_and_gradients = K.function([gram_model.input], [loss, gradients])
def callable(x):
deflattened = x.reshape([-1] + list(shape) + [3])
loss, grad = loss_and_gradients([deflattened])
#print(formatter.format("{:q} ", float(loss)), end=' | ', flush=True)
return loss.astype('float64'), np.ravel(grad.astype('float64'))
return callable
示例14: loss_and_gradients_callable
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def loss_and_gradients_callable(loss_model, shape):
loss = loss_model.output
gradients = K.gradients(loss, loss_model.input)
if keras.backend.backend() == 'tensorflow':
gradients = gradients[0] # This is a Keras inconsistency between theano and tf backends
loss_and_gradients = K.function([loss_model.input], [loss, gradients])
def callable(x):
deflattened = x.reshape([-1] + list(shape) + [3])
loss, grad = loss_and_gradients([deflattened])
#print(formatter.format("{:q} ", float(loss)), end=' | ', flush=True)
return loss.astype('float64'), np.ravel(grad.astype('float64'))
return callable
示例15: get_gradients
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import gradients [as 別名]
def get_gradients(self, loss, params):
'''
Replacement for the default keras get_gradients() function.
Modification: checks if the object has the attribute grads and
returns that rather than calculating the gradients using automatic
differentiation.
'''
if hasattr(self, 'grads'):
grads = self.grads
else:
grads = K.gradients(loss, params)
if hasattr(self, 'clipnorm') and self.clipnorm > 0:
norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
grads = [clip_norm(g, self.clipnorm, norm) for g in grads]
if hasattr(self, 'clipvalue') and self.clipvalue > 0:
grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads]
return grads