當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.get_value方法代碼示例

本文整理匯總了Python中keras.backend.get_value方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.get_value方法的具體用法?Python backend.get_value怎麽用?Python backend.get_value使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.get_value方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: on_batch_end

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def on_batch_end(self, batch, logs):
        # Log the learning rate
        lr = K.get_value(self.model.optimizer.lr)
        self.lrs.append(lr)

        # Log the loss
        loss = logs['loss']
        self.losses.append(loss)

        # Check whether the loss got too large or NaN
        if batch > 5 and (math.isnan(loss) or loss > self.best_loss * 4):
            self.model.stop_training = True
            return

        if loss < self.best_loss:
            self.best_loss = loss

        # Increase the learning rate for the next batch
        lr *= self.lr_mult
        K.set_value(self.model.optimizer.lr, lr) 
開發者ID:surmenok,項目名稱:keras_lr_finder,代碼行數:22,代碼來源:lr_finder.py

示例2: get_config

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def get_config(self):
        config = {
            'lr': float(K.get_value(self.lr)),
            'beta_1': float(K.get_value(self.beta_1)),
            'beta_2': float(K.get_value(self.beta_2)),
            'decay': float(K.get_value(self.decay)),
            'batch_size': int(self.batch_size),
            'total_iterations': int(self.total_iterations),
            'weight_decays': self.weight_decays,
            'lr_multipliers': self.lr_multipliers,
            'use_cosine_annealing': self.use_cosine_annealing,
            't_cur': int(K.get_value(self.t_cur)),
            'eta_t': float(K.eval(self.eta_t)),
            'eta_min': float(K.get_value(self.eta_min)),
            'eta_max': float(K.get_value(self.eta_max)),
            'init_verbose': self.init_verbose,
            'epsilon': self.epsilon,
            'amsgrad': self.amsgrad
        }
        base_config = super(AdamW, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
開發者ID:OverLordGoldDragon,項目名稱:keras-adamw,代碼行數:23,代碼來源:optimizers_225.py

示例3: build

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def build(self, input_shape):
		self.input_spec = [InputSpec(shape=input_shape)]
		self.input_dim = input_shape[2]

		self.W = self.init((self.output_dim, 4 * self.input_dim),
		                   name='{}_W'.format(self.name))
		self.U = self.inner_init((self.input_dim, 4 * self.input_dim),
		                         name='{}_U'.format(self.name))
		self.b = K.variable(np.hstack((np.zeros(self.input_dim),
		                               K.get_value(self.forget_bias_init((self.input_dim,))),
		                               np.zeros(self.input_dim),
		                               np.zeros(self.input_dim))),
		                    name='{}_b'.format(self.name))

		self.A = self.init((self.input_dim, self.output_dim),
		                    name='{}_A'.format(self.name))
		self.ba = K.zeros((self.output_dim,), name='{}_ba'.format(self.name))


		self.trainable_weights = [self.W, self.U, self.b, self.A, self.ba]

		if self.initial_weights is not None:
			self.set_weights(self.initial_weights)
			del self.initial_weights 
開發者ID:bnsnapper,項目名稱:keras_bn_library,代碼行數:26,代碼來源:recurrent.py

示例4: on_epoch_end

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def on_epoch_end(self, epoch, logs={}):
        current = logs.get(self.monitor)
        lr = self.model.optimizer.lr
        # If you want to apply decay.
        if k.get_value(self.model.optimizer.iterations) == 100:
          k.set_value(self.model.optimizer.lr, 0.01)
          print("Updating Learning rate", 0.01)
        print("Current learning rate", k.get_value(self.model.optimizer.lr))    
        if current is None:
            warnings.warn("Early stopping requires %s available!" % self.monitor, RuntimeWarning)
        #if k.get_value(self.model.optimizer.iterations)%5 == 0:
        #save_to_drive(k.get_value(self.model.optimizer.iterations))        
        if current >= self.value:
            if self.verbose > 0:
                print("Epoch %05d: early stopping THR" % epoch)
            self.model.stop_training = True

# Load CIFAR10 Data 
開發者ID:ambujraj,項目名稱:hacktoberfest2018,代碼行數:20,代碼來源:DenseNet_CIFAR10.py

示例5: on_batch_end

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def on_batch_end(self, epoch, logs=None):
        logs = logs or {}

        self.clr_iterations += 1
        new_lr = self.compute_lr()

        self.history.setdefault('lr', []).append(
            K.get_value(self.model.optimizer.lr))
        K.set_value(self.model.optimizer.lr, new_lr)

        if self._update_momentum:
            if not hasattr(self.model.optimizer, 'momentum'):
                raise ValueError("Momentum can be updated only on SGD optimizer !")

            new_momentum = self.compute_momentum()

            self.history.setdefault('momentum', []).append(
                K.get_value(self.model.optimizer.momentum))
            K.set_value(self.model.optimizer.momentum, new_momentum)

        for k, v in logs.items():
            self.history.setdefault(k, []).append(v) 
開發者ID:titu1994,項目名稱:keras-one-cycle,代碼行數:24,代碼來源:clr.py

示例6: _runner

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def _runner(init, shape, target_mean=None, target_std=None,
            target_max=None, target_min=None, upper_bound=None, lower_bound=None):
    variable = init(shape)
    if not isinstance(variable, np.ndarray):
        output = K.get_value(variable)
    else:
        output = variable

    lim = 1e-2
    if target_std is not None:
        assert abs(output.std() - target_std) < lim
    if target_mean is not None:
        assert abs(output.mean() - target_mean) < lim
    if target_max is not None:
        assert abs(output.max() - target_max) < lim
    if target_min is not None:
        assert abs(output.min() - target_min) < lim
    if upper_bound is not None:
        assert output.max() < upper_bound
    if lower_bound is not None:
        assert output.min() > lower_bound 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:23,代碼來源:initializers_test.py

示例7: test_get_iou

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def test_get_iou(self):
        gtbox = K.variable([[1, 1, 3, 3], [2, 2, 4, 4]])
        anchor = K.variable([
            [1, 1, 3, 3],  # gtbox[0]とは完全に一致。つまりIoU=1。
            # gtbox[1]とは1/4重なる。つまりIoU=1/7。
            [1, 0, 3, 2],  # gtbox[0]とは半分重なる。つまりIoU=1/3。
            [2, 2, 4, 4],  # gtbox[0]とは1/4重なる。つまりIoU=1/7。gtbox[1]とは一致。
            [0, 3, 2, 5],  # gtbox[0]とは隣接。
            [4, 3, 6, 5],  # gtbox[0]とは接點無し。
        ])
        expected = np.array([
            [1, 1 / 7],
            [1 / 3, 0],
            [1 / 7, 1],
            [0, 0],
            [0, 0],
        ])
        iou = K.get_value(bbox.get_iou(anchor, gtbox))
        np.testing.assert_almost_equal(iou, expected, decimal=5) 
開發者ID:shtamura,項目名稱:maskrcnn,代碼行數:21,代碼來源:test_bbox.py

示例8: test_LearningRateScheduler

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def test_LearningRateScheduler():
    np.random.seed(1337)
    (X_train, y_train), (X_test, y_test) = get_test_data(num_train=train_samples,
                                                         num_test=test_samples,
                                                         input_shape=(input_dim,),
                                                         classification=True,
                                                         num_classes=num_classes)
    y_test = np_utils.to_categorical(y_test)
    y_train = np_utils.to_categorical(y_train)
    model = Sequential()
    model.add(Dense(num_hidden, input_dim=input_dim, activation='relu'))
    model.add(Dense(num_classes, activation='softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer='sgd',
                  metrics=['accuracy'])

    cbks = [callbacks.LearningRateScheduler(lambda x: 1. / (1. + x))]
    model.fit(X_train, y_train, batch_size=batch_size,
              validation_data=(X_test, y_test), callbacks=cbks, epochs=5)
    assert (float(K.get_value(model.optimizer.lr)) - 0.2) < K.epsilon() 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:22,代碼來源:test_callbacks.py

示例9: test_ReduceLROnPlateau_patience

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def test_ReduceLROnPlateau_patience():
    class DummyOptimizer(object):
        def __init__(self):
            self.lr = K.variable(1.0)

    class DummyModel(object):
        def __init__(self):
            self.optimizer = DummyOptimizer()

    reduce_on_plateau = callbacks.ReduceLROnPlateau(monitor='val_loss',
                                                    patience=2)
    reduce_on_plateau.model = DummyModel()

    losses = [0.0860, 0.1096, 0.1040]
    lrs = []

    for epoch in range(len(losses)):
        reduce_on_plateau.on_epoch_end(epoch, logs={'val_loss': losses[epoch]})
        lrs.append(K.get_value(reduce_on_plateau.model.optimizer.lr))

    # The learning rates should be 1.0 except the last one
    assert all([lr == 1.0 for lr in lrs[:-1]]) and lrs[-1] < 1.0 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:24,代碼來源:test_callbacks.py

示例10: on_epoch_end

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def on_epoch_end(self, epoch, logs={}):
        if self.gamma is not None:
            K.set_value(self.model.optimizer.lr, self.gamma * K.get_value(self.model.optimizer.lr)) 
開發者ID:minerva-ml,項目名稱:steppy-toolkit,代碼行數:5,代碼來源:callbacks.py

示例11: find

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def find(self, x_train, y_train, start_lr, end_lr, batch_size=64, epochs=1, **kw_fit):
        # If x_train contains data for multiple inputs, use length of the first input.
        # Assumption: the first element in the list is single input; NOT a list of inputs.
        N = x_train[0].shape[0] if isinstance(x_train, list) else x_train.shape[0]

        # Compute number of batches and LR multiplier
        num_batches = epochs * N / batch_size
        self.lr_mult = (float(end_lr) / float(start_lr)) ** (float(1) / float(num_batches))
        # Save weights into a file
        initial_weights = self.model.get_weights()

        # Remember the original learning rate
        original_lr = K.get_value(self.model.optimizer.lr)

        # Set the initial learning rate
        K.set_value(self.model.optimizer.lr, start_lr)

        callback = LambdaCallback(on_batch_end=lambda batch, logs: self.on_batch_end(batch, logs))

        self.model.fit(x_train, y_train,
                       batch_size=batch_size, epochs=epochs,
                       callbacks=[callback],
                       **kw_fit)

        # Restore the weights to the state before model fitting
        self.model.set_weights(initial_weights)

        # Restore the original learning rate
        K.set_value(self.model.optimizer.lr, original_lr) 
開發者ID:surmenok,項目名稱:keras_lr_finder,代碼行數:31,代碼來源:lr_finder.py

示例12: find_generator

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def find_generator(self, generator, start_lr, end_lr, epochs=1, steps_per_epoch=None, **kw_fit):
        if steps_per_epoch is None:
            try:
                steps_per_epoch = len(generator)
            except (ValueError, NotImplementedError) as e:
                raise e('`steps_per_epoch=None` is only valid for a'
                        ' generator based on the '
                        '`keras.utils.Sequence`'
                        ' class. Please specify `steps_per_epoch` '
                        'or use the `keras.utils.Sequence` class.')
        self.lr_mult = (float(end_lr) / float(start_lr)) ** (float(1) / float(epochs * steps_per_epoch))

        # Save weights into a file
        initial_weights = self.model.get_weights()

        # Remember the original learning rate
        original_lr = K.get_value(self.model.optimizer.lr)

        # Set the initial learning rate
        K.set_value(self.model.optimizer.lr, start_lr)

        callback = LambdaCallback(on_batch_end=lambda batch,
                                                      logs: self.on_batch_end(batch, logs))

        self.model.fit_generator(generator=generator,
                                 epochs=epochs,
                                 steps_per_epoch=steps_per_epoch,
                                 callbacks=[callback],
                                 **kw_fit)

        # Restore the weights to the state before model fitting
        self.model.set_weights(initial_weights)

        # Restore the original learning rate
        K.set_value(self.model.optimizer.lr, original_lr) 
開發者ID:surmenok,項目名稱:keras_lr_finder,代碼行數:37,代碼來源:lr_finder.py

示例13: get_learning_rate

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def get_learning_rate(self):

        if hasattr(self.model, 'optimizer'):
            config = self.model.optimizer.get_config()

            from keras.optimizers import Adadelta, Adam, Adamax, Adagrad, RMSprop, SGD

            if isinstance(self.model.optimizer, Adadelta) or isinstance(self.model.optimizer, Adam) \
                    or isinstance(self.model.optimizer, Adamax) or isinstance(self.model.optimizer, Adagrad)\
                    or isinstance(self.model.optimizer, RMSprop) or isinstance(self.model.optimizer, SGD):
                return config['lr'] * (1. / (1. + config['decay'] * float(K.get_value(self.model.optimizer.iterations))))

            elif 'lr' in config:
                return config['lr'] 
開發者ID:aetros,項目名稱:aetros-cli,代碼行數:16,代碼來源:KerasCallback.py

示例14: change_lr

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def change_lr(self, new_lr):
        old_lr = K.get_value(self.model.optimizer.lr)
        K.set_value(self.model.optimizer.lr, new_lr)
        if self.verbose == 1:
            print('Learning rate is %g' %new_lr) 
開發者ID:TianzhongSong,項目名稱:PointNet-Keras,代碼行數:7,代碼來源:callbacks.py

示例15: on_epoch_end

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import get_value [as 別名]
def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        self.val_acc['epoch'].append(logs.get('val_acc'))
        self.loss_plot('batch')
        self.loss_plot('epoch')
        tmp_path=os.path.join(self.model_path,str(len(self.accuracy['epoch']))+'_epoch.h5')
        self.model.save_weights(tmp_path)
        lr=K.get_value(self.model.optimizer.lr)
        tmp_path = os.path.join(self.model_path, str(len(self.accuracy['epoch'])) + '_lr.txt')
        lr_result=np.zeros(1)
        lr_result[0]=lr
        np.savetxt(tmp_path,lr_result) 
開發者ID:kiharalab,項目名稱:DOVE,代碼行數:16,代碼來源:Keras_Loss.py


注:本文中的keras.backend.get_value方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。