當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.flatten方法代碼示例

本文整理匯總了Python中keras.backend.flatten方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.flatten方法的具體用法?Python backend.flatten怎麽用?Python backend.flatten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.flatten方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: audio_discriminate_loss2

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def audio_discriminate_loss2(gamma=0.1,beta = 2*0.1,num_speaker=2):
    def loss_func(S_true,S_pred,gamma=gamma,beta=beta,num_speaker=num_speaker):
        sum_mtr = K.zeros_like(S_true[:,:,:,:,0])
        for i in range(num_speaker):
            sum_mtr += K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,i])
            for j in range(num_speaker):
                if i != j:
                    sum_mtr -= gamma*(K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,j]))

        for i in range(num_speaker):
            for j in range(i+1,num_speaker):
                #sum_mtr -= beta*K.square(S_pred[:,:,:,i]-S_pred[:,:,:,j])
                #sum_mtr += beta*K.square(S_true[:,:,:,:,i]-S_true[:,:,:,:,j])
                pass
        #sum = K.sum(K.maximum(K.flatten(sum_mtr),0))

        loss = K.mean(K.flatten(sum_mtr))

        return loss
    return loss_func 
開發者ID:bill9800,項目名稱:speech_separation,代碼行數:22,代碼來源:model_loss.py

示例2: labelembed_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def labelembed_model(base_model, num_classes, **kwargs):
    
    input_ = base_model.input
    embedding = base_model.output
    
    out = keras.layers.Activation('relu')(embedding)
    out = keras.layers.BatchNormalization(name = 'embedding_bn')(out)
    out1 = keras.layers.Dense(num_classes, name = 'prob')(out)
    out2 = keras.layers.Dense(num_classes, name = 'out2')(keras.layers.Lambda(lambda x: K.stop_gradient(x))(out))
    
    cls_input_ = keras.layers.Input((1,), name = 'labels')
    cls_embedding_layer = keras.layers.Embedding(num_classes, num_classes, embeddings_initializer = 'identity', name = 'labelembeddings')
    cls_embedding = keras.layers.Flatten()(cls_embedding_layer(cls_input_))
    
    loss = keras.layers.Lambda(lambda x: labelembed_loss(x[0], x[1], x[2], K.flatten(x[3]), num_classes = num_classes, **kwargs)[:,None], name = 'labelembed_loss')([out1, out2, cls_embedding, cls_input_])
    
    return keras.models.Model([input_, cls_input_], [embedding, out1, loss]) 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:19,代碼來源:learn_labelembedding.py

示例3: softmax_sparse_crossentropy_ignoring_last_label

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def softmax_sparse_crossentropy_ignoring_last_label(y_true, y_pred):
    '''
    Softmax cross-entropy loss function for pascal voc segmentation
    and models which do not perform softmax.
    tensorlow only
    '''
    y_pred = KB.reshape(y_pred, (-1, KB.int_shape(y_pred)[-1]))
    log_softmax = tf.nn.log_softmax(y_pred)

    y_true = KB.one_hot(tf.to_int32(KB.flatten(y_true)),
                        KB.int_shape(y_pred)[-1]+1)
    unpacked = tf.unstack(y_true, axis=-1)
    y_true = tf.stack(unpacked[:-1], axis=-1)

    cross_entropy = -KB.sum(y_true * log_softmax, axis=1)
    cross_entropy_mean = KB.mean(cross_entropy)

    return cross_entropy_mean 
開發者ID:waspinator,項目名稱:deep-learning-explorer,代碼行數:20,代碼來源:losses.py

示例4: dice_coef

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def dice_coef(y_true, y_pred, smooth=1.0):
    ''' Dice Coefficient

    Args:
        y_true (np.array): Ground Truth Heatmap (Label)
        y_pred (np.array): Prediction Heatmap
    '''

    class_num = 2
    for i in range(class_num):
        y_true_f = K.flatten(y_true[:,:,:,i])
        y_pred_f = K.flatten(y_pred[:,:,:,i])
        intersection = K.sum(y_true_f * y_pred_f)
        loss = ((2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth))
        if i == 0:
            total_loss = loss
        else:
            total_loss = total_loss + loss
    total_loss = total_loss / class_num
    return total_loss 
開發者ID:cv-lee,項目名稱:BraTs,代碼行數:22,代碼來源:unet.py

示例5: iou

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def iou(actual, predicted):
    """Compute Intersection over Union statistic (i.e. Jaccard Index)

    See https://en.wikipedia.org/wiki/Jaccard_index

    Parameters
    ----------
    actual : list
        Ground-truth labels
    predicted : list
        Predicted labels

    Returns
    -------
    float
        Intersection over Union value
    """
    actual = backend.flatten(actual)
    predicted = backend.flatten(predicted)
    intersection = backend.sum(actual * predicted)
    union = backend.sum(actual) + backend.sum(predicted) - intersection
    return 1.0 * intersection / union 
開發者ID:Oslandia,項目名稱:deeposlandia,代碼行數:24,代碼來源:metrics.py

示例6: audio_discriminate_loss2

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def audio_discriminate_loss2(gamma=0.1,beta = 2*0.1,people_num=2):
    def loss_func(S_true,S_pred,gamma=gamma,beta=beta,people_num=people_num):
        sum_mtr = K.zeros_like(S_true[:,:,:,:,0])
        for i in range(people_num):
            sum_mtr += K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,i])
            for j in range(people_num):
                if i != j:
                    sum_mtr -= gamma*(K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,j]))

        for i in range(people_num):
            for j in range(i+1,people_num):
                #sum_mtr -= beta*K.square(S_pred[:,:,:,i]-S_pred[:,:,:,j])
                #sum_mtr += beta*K.square(S_true[:,:,:,:,i]-S_true[:,:,:,:,j])
                pass
        #sum = K.sum(K.maximum(K.flatten(sum_mtr),0))

        loss = K.mean(K.flatten(sum_mtr))

        return loss
    return loss_func 
開發者ID:JusperLee,項目名稱:Looking-to-Listen-at-the-Cocktail-Party,代碼行數:22,代碼來源:loss.py

示例7: dice_coef_clipped

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def dice_coef_clipped(y_true, y_pred, smooth=1.0):
    y_true_f = K.flatten(K.round(y_true))
    y_pred_f = K.flatten(K.round(y_pred))
    intersection = K.sum(y_true_f * y_pred_f)
    return 100. * (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:7,代碼來源:losses.py

示例8: dice_coef

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def dice_coef(y_true, y_pred, smooth=1.0):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:7,代碼來源:losses.py

示例9: online_bootstrapping

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def online_bootstrapping(y_true, y_pred, pixels=512, threshold=0.5):
    """ Implements nline Bootstrapping crossentropy loss, to train only on hard pixels,
        see  https://arxiv.org/abs/1605.06885 Bridging Category-level and Instance-level Semantic Image Segmentation
        The implementation is a bit different as we use binary crossentropy instead of softmax
        SUPPORTS ONLY MINIBATCH WITH 1 ELEMENT!
    # Arguments
        y_true: A tensor with labels.

        y_pred: A tensor with predicted probabilites.

        pixels: number of hard pixels to keep

        threshold: confidence to use, i.e. if threshold is 0.7, y_true=1, prediction=0.65 then we consider that pixel as hard
    # Returns
        Mean loss value
    """
    y_true = K.flatten(y_true)
    y_pred = K.flatten(y_pred)
    difference = K.abs(y_true - y_pred)

    values, indices = K.tf.nn.top_k(difference, sorted=True, k=pixels)
    min_difference = (1 - threshold)
    y_true = K.tf.gather(K.gather(y_true, indices), K.tf.where(values > min_difference))
    y_pred = K.tf.gather(K.gather(y_pred, indices), K.tf.where(values > min_difference))

    return K.mean(K.binary_crossentropy(y_true, y_pred)) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:28,代碼來源:losses.py

示例10: dice_coef_border

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def dice_coef_border(y_true, y_pred):
    border = get_border_mask((21, 21), y_true)

    border = K.flatten(border)
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    y_true_f = K.tf.gather(y_true_f, K.tf.where(border > 0.5))
    y_pred_f = K.tf.gather(y_pred_f, K.tf.where(border > 0.5))

    return dice_coef(y_true_f, y_pred_f) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:12,代碼來源:losses.py

示例11: bce_border

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def bce_border(y_true, y_pred):
    border = get_border_mask((21, 21), y_true)

    border = K.flatten(border)
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    y_true_f = K.tf.gather(y_true_f, K.tf.where(border > 0.5))
    y_pred_f = K.tf.gather(y_pred_f, K.tf.where(border > 0.5))

    return binary_crossentropy(y_true_f, y_pred_f) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:12,代碼來源:losses.py

示例12: audio_discriminate_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def audio_discriminate_loss(gamma=0.1,num_speaker=2):
    def loss_func(S_true,S_pred,gamma=gamma,num_speaker=num_speaker):
        sum = 0
        for i in range(num_speaker):
            sum += K.sum(K.flatten((K.square(S_true[:,:,:,i]-S_pred[:,:,:,i]))))
            for j in range(num_speaker):
                if i != j:
                    sum -= gamma*K.sum(K.flatten((K.square(S_true[:,:,:,i]-S_pred[:,:,:,j]))))

        loss = sum / (num_speaker*298*257*2)
        return loss
    return loss_func 
開發者ID:bill9800,項目名稱:speech_separation,代碼行數:14,代碼來源:model_loss.py

示例13: _buildEncoder

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def _buildEncoder(self, x, latent_rep_size, max_length, epsilon_std=0.01):
    h = Convolution1D(9, 9, activation='relu', name='conv_1')(x)
    h = Convolution1D(9, 9, activation='relu', name='conv_2')(h)
    h = Convolution1D(10, 11, activation='relu', name='conv_3')(h)
    h = Flatten(name='flatten_1')(h)
    h = Dense(435, activation='relu', name='dense_1')(h)

    def sampling(args):
      z_mean_, z_log_var_ = args
      batch_size = K.shape(z_mean_)[0]
      epsilon = K.random_normal(
          shape=(batch_size, latent_rep_size), mean=0., std=epsilon_std)
      return z_mean_ + K.exp(z_log_var_ / 2) * epsilon

    z_mean = Dense(latent_rep_size, name='z_mean', activation='linear')(h)
    z_log_var = Dense(latent_rep_size, name='z_log_var', activation='linear')(h)

    def vae_loss(x, x_decoded_mean):
      x = K.flatten(x)
      x_decoded_mean = K.flatten(x_decoded_mean)
      xent_loss = max_length * objectives.binary_crossentropy(x, x_decoded_mean)
      kl_loss = -0.5 * K.mean(
          1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
      return xent_loss + kl_loss

    return (vae_loss, Lambda(
        sampling, output_shape=(latent_rep_size,),
        name='lambda')([z_mean, z_log_var])) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:30,代碼來源:model.py

示例14: quantile_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def quantile_loss(y_true, y_pred, taus):
    """
    The quantiles loss for a list of quantiles. Sums up the error contribution
    from the each of the quantile loss functions.
    """
    e = skewed_absolute_error(
        K.flatten(y_true), K.flatten(y_pred[:, 0]), taus[0])
    for i, tau in enumerate(taus[1:]):
        e += skewed_absolute_error(K.flatten(y_true),
                                   K.flatten(y_pred[:, i + 1]),
                                   tau)
    return e 
開發者ID:atmtools,項目名稱:typhon,代碼行數:14,代碼來源:qrnn.py

示例15: _vae_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import flatten [as 別名]
def _vae_loss(self,input,output):
        '''
        loss function for variational autoencoder
        '''
        input_flat = K.flatten(input)
        output_flat = K.flatten(output)
        xent_loss = self.image_size[0] * self.image_size[1] \
                    * objectives.binary_crossentropy(input_flat,output_flat)
        kl_loss = - 0.5 * K.mean(1 + self.z_log_var - K.square(self.z_mean) 
                  - K.exp(self.z_log_var), axis=-1)
        return xent_loss + kl_loss 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:13,代碼來源:conv_vae.py


注:本文中的keras.backend.flatten方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。