當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.expand_dims方法代碼示例

本文整理匯總了Python中keras.backend.expand_dims方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.expand_dims方法的具體用法?Python backend.expand_dims怎麽用?Python backend.expand_dims使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.expand_dims方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: step

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def step(self, x, states):   
        h = states[0]
        # states[1] necessary?

        # equals K.dot(X, self._W1) + self._b2 with X.shape=[bs, T, input_dim]
        total_x_prod = states[-1]
        # comes from the constants (equals the input sequence)
        X = states[-2]
        
        # expand dims to add the vector which is only valid for this time step
        # to total_x_prod which is valid for all time steps
        hw = K.expand_dims(K.dot(h, self._W2), 1)
        additive_atn = total_x_prod + hw
        attention = K.softmax(K.dot(additive_atn, self._V), axis=1)
        x_weighted = K.sum(attention * X, [1])

        x = K.dot(K.concatenate([x, x_weighted], 1), self._W3) + self._b3
        
        h, new_states = self.layer.cell.call(x, states[:-2])
        
        return h, new_states 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:23,代碼來源:attention.py

示例2: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def call(self, x, mask=None):
        # computes a probability distribution over the timesteps
        # uses 'max trick' for numerical stability
        # reshape is done to avoid issue with Tensorflow
        # and 1-dimensional weights
        logits = K.dot(x, self.W)
        x_shape = K.shape(x)
        logits = K.reshape(logits, (x_shape[0], x_shape[1]))
        ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True))

        # masked timesteps have zero weight
        if mask is not None:
            mask = K.cast(mask, K.floatx())
            ai = ai * mask
        att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon())
        weighted_input = x * K.expand_dims(att_weights)
        result = K.sum(weighted_input, axis=1)
        if self.return_attention:
            return [result, att_weights]
        return result 
開發者ID:minerva-ml,項目名稱:steppy-toolkit,代碼行數:22,代碼來源:contrib.py

示例3: time_distributed_masked_max

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def time_distributed_masked_max(x, m):
    """
    Computes max along the first (time) dimension.

    In:
        x - input; a 3D tensor
        m - mask
        m_value - value for masking
    """
    # place infinities where mask is off
    m_value = 0.0
    tmp = K.switch(K.equal(m, 0.0), -numpy.inf, 0.0)
    x_with_inf = x + K.expand_dims(tmp)
    x_max = K.max(x_with_inf, axis=1) 
    r = K.switch(K.equal(x_max, -numpy.inf), m_value, x_max)
    return r 


## classes  ##

# Transforms existing layers to masked layers 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:23,代碼來源:keras_extensions.py

示例4: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def call(self, inputs, **kwargs):
        # (batch_size, 1, input_num_capsule, input_dim_capsule)
        expand_inputs = K.expand_dims(inputs, axis=1)
        # (batch_size, num_capsule, input_num_capsule, input_dim_capsule)
        expand_inputs = K.tile(expand_inputs, (1, self.num_capsule, 1, 1))
        # (batch_size, num_capsule, input_num_capsule, dim_capsule)
        u_hat = K.map_fn(lambda x: K.batch_dot(x, self.W, axes=[2, 3]), expand_inputs)

        if self.num_routing <= 0:
            self.num_routing = 3
        # (batch_size, num_capsule, input_num_capsule)
        b = K.zeros((K.shape(u_hat)[0], self.num_capsule, self.input_num_capsule))
        for i in xrange(self.num_routing):
            # (batch_size, num_capsule, input_num_capsule)
            c = softmax(b, axis=1)
            # (batch_size, num_capsule, dim_capsule)
            s = K.batch_dot(c, u_hat, axes=[2, 2])
            squashed_s = squash(s)
            if i < self.num_routing - 1:
                # (batch_size, num_capsule, input_num_capsule)
                b += K.batch_dot(squashed_s, u_hat, axes=[2, 3])
        return squashed_s 
開發者ID:l11x0m7,項目名稱:CapsNet,代碼行數:24,代碼來源:capsule.py

示例5: save_tmp_func

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def save_tmp_func(self, step):

        cur_mask = K.eval(self.mask_upsample_tensor)
        cur_mask = cur_mask[0, ..., 0]
        img_filename = (
            '%s/%s' % (self.tmp_dir, 'tmp_mask_step_%d.png' % step))
        utils_backdoor.dump_image(np.expand_dims(cur_mask, axis=2) * 255,
                                  img_filename,
                                  'png')

        cur_fusion = K.eval(self.mask_upsample_tensor *
                            self.pattern_raw_tensor)
        cur_fusion = cur_fusion[0, ...]
        img_filename = (
            '%s/%s' % (self.tmp_dir, 'tmp_fusion_step_%d.png' % step))
        utils_backdoor.dump_image(cur_fusion, img_filename, 'png')

        pass 
開發者ID:bolunwang,項目名稱:backdoor,代碼行數:20,代碼來源:visualizer.py

示例6: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def call(self, x, mask=None):
        uit = dot_product(x, self.W)

        if self.bias:
            uit += self.b

        uit = K.tanh(uit)
        ait = dot_product(uit, self.u)

        a = K.exp(ait)

        # apply mask after the exp. will be re-normalized next
        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            a *= K.cast(mask, K.floatx())

        # in some cases especially in the early stages of training the sum may be almost zero
        # and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
        # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        a = K.expand_dims(a)
        weighted_input = x * a
        return K.sum(weighted_input, axis=1) 
開發者ID:Hsankesara,項目名稱:DeepResearch,代碼行數:26,代碼來源:attention_with_context.py

示例7: add_boundary_energy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def add_boundary_energy(x, b_start=None, b_end=None, mask=None):
    '''Given the observations x, it adds the start boundary energy b_start (resp.
    end boundary energy b_end on the start (resp. end) elements and multiplies
    the mask.'''
    if mask is None:
        if b_start is not None:
            x = K.concatenate([x[:, :1, :] + b_start, x[:, 1:, :]], axis=1)
        if b_end is not None:
            x = K.concatenate([x[:, :-1, :], x[:, -1:, :] + b_end], axis=1)
    else:
        mask = K.cast(mask, K.floatx())
        mask = K.expand_dims(mask, 2)
        x *= mask
        if b_start is not None:
            mask_r = K.concatenate([K.zeros_like(mask[:, :1]), mask[:, :-1]], axis=1)
            start_mask = K.cast(K.greater(mask, mask_r), K.floatx())
            x = x + start_mask * b_start
        if b_end is not None:
            mask_l = K.concatenate([mask[:, 1:], K.zeros_like(mask[:, -1:])], axis=1)
            end_mask = K.cast(K.greater(mask, mask_l), K.floatx())
            x = x + end_mask * b_end
    return x 
開發者ID:UKPLab,項目名稱:elmo-bilstm-cnn-crf,代碼行數:24,代碼來源:ChainCRF.py

示例8: _forward

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def _forward(x, reduce_step, initial_states, U, mask=None):
    '''Forward recurrence of the linear chain crf.'''

    def _forward_step(energy_matrix_t, states):
        alpha_tm1 = states[-1]
        new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t)
        return new_states[0], new_states

    U_shared = K.expand_dims(K.expand_dims(U, 0), 0)

    if mask is not None:
        mask = K.cast(mask, K.floatx())
        mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3)
        U_shared = U_shared * mask_U

    inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared
    inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])], axis=1)

    last, values, _ = K.rnn(_forward_step, inputs, initial_states)
    return last, values 
開發者ID:UKPLab,項目名稱:elmo-bilstm-cnn-crf,代碼行數:22,代碼來源:ChainCRF.py

示例9: _backward

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def _backward(gamma, mask):
    '''Backward recurrence of the linear chain crf.'''
    gamma = K.cast(gamma, 'int32')

    def _backward_step(gamma_t, states):
        y_tm1 = K.squeeze(states[0], 0)
        y_t = batch_gather(gamma_t, y_tm1)
        return y_t, [K.expand_dims(y_t, 0)]

    initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)]
    _, y_rev, _ = K.rnn(_backward_step,
                        gamma,
                        initial_states,
                        go_backwards=True)
    y = K.reverse(y_rev, 1)

    if mask is not None:
        mask = K.cast(mask, dtype='int32')
        # mask output
        y *= mask
        # set masked values to -1
        y += -(1 - mask)
    return y 
開發者ID:UKPLab,項目名稱:elmo-bilstm-cnn-crf,代碼行數:25,代碼來源:ChainCRF.py

示例10: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def call(self, x, mask=None):
        eij = dot_product(x, self.W)

        if self.bias:
            eij += self.b

        eij = K.tanh(eij)

        a = K.exp(eij)

        if mask is not None:
            a *= K.cast(mask, K.floatx())

        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        weighted_input = x * K.expand_dims(a)

        result = K.sum(weighted_input, axis=1)

        if self.return_attention:
            return [result, a]
        return result 
開發者ID:jiujiezz,項目名稱:deephlapan,代碼行數:24,代碼來源:attention.py

示例11: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def call(self, inputs, **kwargs):
        if type(inputs) is list:  # true label is provided with shape = [None, n_classes], i.e. one-hot code.
            assert len(inputs) == 2
            inputs, mask = inputs
        else:  # if no true label, mask by the max length of capsules. Mainly used for prediction
            # compute lengths of capsules
            x = K.sqrt(K.sum(K.square(inputs), -1))
            # generate the mask which is a one-hot code.
            # mask.shape=[None, n_classes]=[None, num_capsule]
            mask = K.one_hot(indices=K.argmax(x, 1), num_classes=x.get_shape().as_list()[1])

        # inputs.shape=[None, num_capsule, dim_capsule]
        # mask.shape=[None, num_capsule]
        # masked.shape=[None, num_capsule * dim_capsule]
        masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))
        return masked 
開發者ID:ssrp,項目名稱:Multi-level-DCNet,代碼行數:18,代碼來源:capsulelayers.py

示例12: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def call(self, inputs, training=None):
        inputs_expand = K.expand_dims(inputs, 1)
        
        inputs_tiled = K.tile(inputs_expand, [1, self.num_capsule, 1, 1])
        
        if(self.channels!=0):
            W2 = K.repeat_elements(self.W,int(self.input_num_capsule/self.channels),1)
        else:
            W2 = self.W
            
        inputs_hat = K.map_fn(lambda x: K.batch_dot(x, W2, [2, 3]) , elems=inputs_tiled)

        b = tf.zeros(shape=[K.shape(inputs_hat)[0], self.num_capsule, self.input_num_capsule])

        assert self.routings > 0, 'The routings should be > 0.'
        for i in range(self.routings):

            c = tf.nn.softmax(b, dim=1)
            outputs = squash(K.batch_dot(c, inputs_hat, [2, 2])+ self.B)

            if i < self.routings - 1:
                b += K.batch_dot(outputs, inputs_hat, [2, 3])

        return outputs 
開發者ID:vinojjayasundara,項目名稱:textcaps,代碼行數:26,代碼來源:capsulelayers.py

示例13: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def call(self, x, mask=None):
        # size of x :[batch_size, sel_len, attention_dim]
        # size of u :[batch_size, attention_dim]
        # uit = tanh(xW+b)
        uit = K.tanh(K.bias_add(K.dot(x, self.W), self.b))
        ait = K.dot(uit, self.u)
        ait = K.squeeze(ait, -1)

        ait = K.exp(ait)

        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            ait *= K.cast(mask, K.floatx())
        ait /= K.cast(K.sum(ait, axis=1, keepdims=True) + K.epsilon(), K.floatx())
        ait = K.expand_dims(ait)
        weighted_input = x * ait
        output = K.sum(weighted_input, axis=1)

        return output 
開發者ID:shibing624,項目名稱:text-classifier,代碼行數:21,代碼來源:attention_layer.py

示例14: compute_attention_mask

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def compute_attention_mask(self, layer_id, segment_ids):
        """為seq2seq采用特定的attention mask
        """
        if self.attention_mask is None:

            def seq2seq_attention_mask(s, repeats=1):
                seq_len = K.shape(s)[1]
                ones = K.ones((1, repeats, seq_len, seq_len))
                a_mask = tf.linalg.band_part(ones, -1, 0)
                s_ex12 = K.expand_dims(K.expand_dims(s, 1), 2)
                s_ex13 = K.expand_dims(K.expand_dims(s, 1), 3)
                a_mask = (1 - s_ex13) * (1 - s_ex12) + s_ex13 * a_mask
                a_mask = K.reshape(a_mask, (-1, seq_len, seq_len))
                return a_mask

            self.attention_mask = Lambda(
                seq2seq_attention_mask,
                arguments={"repeats": self.num_attention_heads},
                name="Attention-Mask")(segment_ids)

        return self.attention_mask 
開發者ID:liushaoweihua,項目名稱:keras-bert-ner,代碼行數:23,代碼來源:bert.py

示例15: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import expand_dims [as 別名]
def call(self, x):
        # previous mean
        pre_mean = self.mean
    
        # compute this batch stats
        this_sum = tf.reduce_sum(x, 0)
        this_bs = tf.cast(K.shape(x)[0], 'float32')  # this batch size
        
        # increase count and compute weights
        new_count = self.count + this_bs
        alpha = this_bs/K.minimum(new_count, self.cap)
        
        # compute new mean. Note that once we reach self.cap (e.g. 1000), the 'previous mean' matters less
        new_mean = pre_mean * (1-alpha) + (this_sum/this_bs) * alpha
        
        updates = [(self.count, new_count), (self.mean, new_mean)]
        self.add_update(updates, x)
        
        # the first few 1000 should not matter that much towards this cost
        return K.minimum(1., new_count/self.cap) * K.expand_dims(new_mean, 0) 
開發者ID:voxelmorph,項目名稱:voxelmorph,代碼行數:22,代碼來源:layers.py


注:本文中的keras.backend.expand_dims方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。