當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.exp方法代碼示例

本文整理匯總了Python中keras.backend.exp方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.exp方法的具體用法?Python backend.exp怎麽用?Python backend.exp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.exp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def call(self, x, mask=None):
        # computes a probability distribution over the timesteps
        # uses 'max trick' for numerical stability
        # reshape is done to avoid issue with Tensorflow
        # and 1-dimensional weights
        logits = K.dot(x, self.W)
        x_shape = K.shape(x)
        logits = K.reshape(logits, (x_shape[0], x_shape[1]))
        ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True))

        # masked timesteps have zero weight
        if mask is not None:
            mask = K.cast(mask, K.floatx())
            ai = ai * mask
        att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon())
        weighted_input = x * K.expand_dims(att_weights)
        result = K.sum(weighted_input, axis=1)
        if self.return_attention:
            return [result, att_weights]
        return result 
開發者ID:minerva-ml,項目名稱:steppy-toolkit,代碼行數:22,代碼來源:contrib.py

示例2: build_encoder

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def build_encoder(self):
        # Encoder

        img = Input(shape=self.img_shape)

        h = Flatten()(img)
        h = Dense(512)(h)
        h = LeakyReLU(alpha=0.2)(h)
        h = Dense(512)(h)
        h = LeakyReLU(alpha=0.2)(h)
        mu = Dense(self.latent_dim)(h)
        log_var = Dense(self.latent_dim)(h)
        latent_repr = merge([mu, log_var],
                mode=lambda p: p[0] + K.random_normal(K.shape(p[0])) * K.exp(p[1] / 2),
                output_shape=lambda p: p[0])

        return Model(img, latent_repr) 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:19,代碼來源:aae.py

示例3: sampling

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def sampling(args: tuple):
    """
    Reparameterization trick by sampling z from unit Gaussian
    :param args: (tensor, tensor) mean and log of variance of q(z|x)
    :returns tensor: sampled latent vector z
    """

    # unpack the input tuple
    z_mean, z_log_var = args

    # mini-batch size
    mb_size = K.shape(z_mean)[0]

    # latent space size
    dim = K.int_shape(z_mean)[1]

    # random normal vector with mean=0 and std=1.0
    epsilon = K.random_normal(shape=(mb_size, dim))

    return z_mean + K.exp(0.5 * z_log_var) * epsilon 
開發者ID:ivan-vasilev,項目名稱:Python-Deep-Learning-SE,代碼行數:22,代碼來源:chapter_06_001.py

示例4: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def call(self, x, mask=None):
        uit = dot_product(x, self.W)

        if self.bias:
            uit += self.b

        uit = K.tanh(uit)
        ait = dot_product(uit, self.u)

        a = K.exp(ait)

        # apply mask after the exp. will be re-normalized next
        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            a *= K.cast(mask, K.floatx())

        # in some cases especially in the early stages of training the sum may be almost zero
        # and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
        # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        a = K.expand_dims(a)
        weighted_input = x * a
        return K.sum(weighted_input, axis=1) 
開發者ID:Hsankesara,項目名稱:DeepResearch,代碼行數:26,代碼來源:attention_with_context.py

示例5: gen_cosine_amp

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def gen_cosine_amp(amp=100, period=1000, x0=0, xn=50000, step=1, k=0.0001):
	"""Generates an absolute cosine time series with the amplitude
	exponentially decreasing

	Arguments:
	    amp: amplitude of the cosine function
	    period: period of the cosine function
	    x0: initial x of the time series
	    xn: final x of the time series
	    step: step of the time series discretization
	    k: exponential rate
	"""
	cos = np.zeros(((xn - x0) * step, 1, 1))
	for i in range(len(cos)):
		idx = x0 + i * step
		cos[i, 0, 0] = amp * np.cos(2 * np.pi * idx / period)
		cos[i, 0, 0] = cos[i, 0, 0] * np.exp(-k * idx)
	return cos 
開發者ID:bnsnapper,項目名稱:keras_bn_library,代碼行數:20,代碼來源:test_vae_lstm.py

示例6: sampling

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def sampling(self, args):
        """Reparametrisation by sampling from Gaussian, N(0,I)
        To sample from epsilon = Norm(0,I) instead of from likelihood Q(z|X)
        with latent variables z: z = z_mean + sqrt(var) * epsilon

        Parameters
        ----------
        args : tensor
            Mean and log of variance of Q(z|X).
    
        Returns
        -------
        z : tensor
            Sampled latent variable.
        """

        z_mean, z_log = args
        batch = K.shape(z_mean)[0]  # batch size
        dim = K.int_shape(z_mean)[1]  # latent dimension
        epsilon = K.random_normal(shape=(batch, dim))  # mean=0, std=1.0

        return z_mean + K.exp(0.5 * z_log) * epsilon 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:24,代碼來源:vae.py

示例7: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def call(self, x, mask=None):
        eij = dot_product(x, self.W)

        if self.bias:
            eij += self.b

        eij = K.tanh(eij)

        a = K.exp(eij)

        if mask is not None:
            a *= K.cast(mask, K.floatx())

        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        weighted_input = x * K.expand_dims(a)

        result = K.sum(weighted_input, axis=1)

        if self.return_attention:
            return [result, a]
        return result 
開發者ID:jiujiezz,項目名稱:deephlapan,代碼行數:24,代碼來源:attention.py

示例8: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def call(self, x, mask=None):
        # size of x :[batch_size, sel_len, attention_dim]
        # size of u :[batch_size, attention_dim]
        # uit = tanh(xW+b)
        uit = K.tanh(K.bias_add(K.dot(x, self.W), self.b))
        ait = K.dot(uit, self.u)
        ait = K.squeeze(ait, -1)

        ait = K.exp(ait)

        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            ait *= K.cast(mask, K.floatx())
        ait /= K.cast(K.sum(ait, axis=1, keepdims=True) + K.epsilon(), K.floatx())
        ait = K.expand_dims(ait)
        weighted_input = x * ait
        output = K.sum(weighted_input, axis=1)

        return output 
開發者ID:shibing624,項目名稱:text-classifier,代碼行數:21,代碼來源:attention_layer.py

示例9: rbf_moment_matching

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def rbf_moment_matching(y_true, y_pred, sigmas=[2, 5, 10, 20, 40, 80]):
    """Generative moment matching loss with RBF kernel.

    Reference: https://arxiv.org/abs/1502.02761
    """

    warnings.warn('Moment matching loss is still in development.')

    if len(K.int_shape(y_pred)) != 2 or len(K.int_shape(y_true)) != 2:
        raise ValueError('RBF Moment Matching function currently only works '
                         'for outputs with shape (batch_size, num_features).'
                         'Got y_true="%s" and y_pred="%s".' %
                         (str(K.int_shape(y_pred)), str(K.int_shape(y_true))))

    sigmas = list(sigmas) if isinstance(sigmas, (list, tuple)) else [sigmas]

    x = K.concatenate([y_pred, y_true], 0)

    # Performs dot product between all combinations of rows in X.
    xx = K.dot(x, K.transpose(x))  # (batch_size, batch_size)

    # Performs dot product of all rows with themselves.
    x2 = K.sum(x * x, 1, keepdims=True)  # (batch_size, None)

    # Gets exponent entries of the RBF kernel (without sigmas).
    exponent = xx - 0.5 * x2 - 0.5 * K.transpose(x2)

    # Applies all the sigmas.
    total_loss = None
    for sigma in sigmas:
        kernel_val = K.exp(exponent / sigma)
        loss = K.sum(kernel_val)
        total_loss = loss if total_loss is None else loss + total_loss

    return total_loss 
開發者ID:codekansas,項目名稱:gandlf,代碼行數:37,代碼來源:losses.py

示例10: exp_l1

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def exp_l1(a, b):
    """Exponential of L1 similarity. Maximum is 1 (a == b), minimum is 0."""

    return K.exp(l1(a, b)) 
開發者ID:codekansas,項目名稱:gandlf,代碼行數:6,代碼來源:similarities.py

示例11: exp_l2

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def exp_l2(a, b):
    """Exponential of L2 similarity. Maximum is 1 (a == b), minimum is 0."""

    return K.exp(l2(a, b)) 
開發者ID:codekansas,項目名稱:gandlf,代碼行數:6,代碼來源:similarities.py

示例12: exponent_neg_manhattan_distance

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def exponent_neg_manhattan_distance(left, right):
    ''' 
    Purpose : Helper function for the similarity estimate of the LSTMs outputs
    Inputs : Two n-dimensional vectors
    Output : Manhattan distance between the input vectors
    
    '''
    return K.exp(-K.sum(K.abs(left-right), axis=1, keepdims=True))


# Applying the pre-processing function on the combined text corpus 
開發者ID:rupak-118,項目名稱:Quora-Question-Pairs,代碼行數:13,代碼來源:MaLSTM_train.py

示例13: exponent_neg_manhattan_distance

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def exponent_neg_manhattan_distance(left, right):
    ''' 
    Purpose : Helper function for the similarity estimate of the LSTMs outputs
    Inputs : Two n-dimensional vectors
    Output : Manhattan distance between the input vectors
    
    '''
    return K.exp(-K.sum(K.abs(left-right), axis=1, keepdims=True))


#print("\n Helper functions loaded")

# Based on the training set, a keep list of common dot words was prepared 
開發者ID:rupak-118,項目名稱:Quora-Question-Pairs,代碼行數:15,代碼來源:test.py

示例14: softmax

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def softmax(x, axis=-1):
    """
    Self-defined softmax function
    """
    x = K.exp(x - K.max(x, axis=axis, keepdims=True))
    x /= K.sum(x, axis=axis, keepdims=True)
    return x 
開發者ID:l11x0m7,項目名稱:CapsNet,代碼行數:9,代碼來源:capsule.py

示例15: rbf

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import exp [as 別名]
def rbf(x):
    #This is not really a radial basis function, but it is similar
    return K.exp(-K.square(x)) 
開發者ID:Andres-Hernandez,項目名稱:CalibrationNN,代碼行數:5,代碼來源:neural_network.py


注:本文中的keras.backend.exp方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。