當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.eval方法代碼示例

本文整理匯總了Python中keras.backend.eval方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.eval方法的具體用法?Python backend.eval怎麽用?Python backend.eval使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.eval方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_config

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def get_config(self):
        config = {
            'lr': float(K.get_value(self.lr)),
            'beta_1': float(K.get_value(self.beta_1)),
            'beta_2': float(K.get_value(self.beta_2)),
            'decay': float(K.get_value(self.decay)),
            'batch_size': int(self.batch_size),
            'total_iterations': int(self.total_iterations),
            'weight_decays': self.weight_decays,
            'lr_multipliers': self.lr_multipliers,
            'use_cosine_annealing': self.use_cosine_annealing,
            't_cur': int(K.get_value(self.t_cur)),
            'eta_t': float(K.eval(self.eta_t)),
            'eta_min': float(K.get_value(self.eta_min)),
            'eta_max': float(K.get_value(self.eta_max)),
            'init_verbose': self.init_verbose,
            'epsilon': self.epsilon,
            'amsgrad': self.amsgrad
        }
        base_config = super(AdamW, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
開發者ID:OverLordGoldDragon,項目名稱:keras-adamw,代碼行數:23,代碼來源:optimizers_225.py

示例2: save_tmp_func

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def save_tmp_func(self, step):

        cur_mask = K.eval(self.mask_upsample_tensor)
        cur_mask = cur_mask[0, ..., 0]
        img_filename = (
            '%s/%s' % (self.tmp_dir, 'tmp_mask_step_%d.png' % step))
        utils_backdoor.dump_image(np.expand_dims(cur_mask, axis=2) * 255,
                                  img_filename,
                                  'png')

        cur_fusion = K.eval(self.mask_upsample_tensor *
                            self.pattern_raw_tensor)
        cur_fusion = cur_fusion[0, ...]
        img_filename = (
            '%s/%s' % (self.tmp_dir, 'tmp_fusion_step_%d.png' % step))
        utils_backdoor.dump_image(cur_fusion, img_filename, 'png')

        pass 
開發者ID:bolunwang,項目名稱:backdoor,代碼行數:20,代碼來源:visualizer.py

示例3: test_switchnorm_convnet

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_switchnorm_convnet():
    model = Sequential()
    norm = SwitchNormalization(axis=1, input_shape=(3, 4, 4), momentum=0.8)
    model.add(norm)
    model.compile(loss='mse', optimizer='sgd')

    # centered on 5.0, variance 10.0
    np.random.seed(123)
    x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 3, 4, 4))
    model.fit(x, x, epochs=4, verbose=0)
    out = model.predict(x)
    out -= np.reshape(K.eval(norm.beta), (1, 3, 1, 1))
    out /= np.reshape(K.eval(norm.gamma), (1, 3, 1, 1))

    assert_allclose(np.mean(out, axis=(0, 2, 3)), 0.0, atol=1e-1)
    assert_allclose(np.std(out, axis=(0, 2, 3)), 1.0, atol=1e-1) 
開發者ID:titu1994,項目名稱:keras-switchnorm,代碼行數:18,代碼來源:test_switchnorm.py

示例4: evaluate

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def evaluate(self, inputs, fn_inverse=None, fn_plot=None):
        try:
            X, y = inputs
            inputs = X
        except:
            X, conditions, y = inputs
            inputs = [X, conditions]

        y_hat = self.predict(inputs)

        if fn_inverse is not None:
            y_hat = fn_inverse(y_hat)
            y = fn_inverse(y)

        if fn_plot is not None:
            fn_plot([y, y_hat])

        results = []
        for m in self.model.metrics:
            if isinstance(m, str):
                results.append(K.eval(K.mean(get(m)(y, y_hat))))
            else:
                results.append(K.eval(K.mean(m(y, y_hat))))
        return results 
開發者ID:albertogaspar,項目名稱:dts,代碼行數:26,代碼來源:FFNN.py

示例5: test_instancenorm_perinstancecorrectness

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_instancenorm_perinstancecorrectness():
    model = Sequential()
    norm = InstanceNormalization(input_shape=(10,))
    model.add(norm)
    model.compile(loss='mse', optimizer='sgd')

    # bimodal distribution
    z = np.random.normal(loc=5.0, scale=10.0, size=(2, 10))
    y = np.random.normal(loc=-5.0, scale=17.0, size=(2, 10))
    x = np.append(z, y)
    x = np.reshape(x, (4, 10))
    model.fit(x, x, epochs=4, batch_size=4, verbose=1)
    out = model.predict(x)
    out -= K.eval(norm.beta)
    out /= K.eval(norm.gamma)

    # verify that each instance in the batch is individually normalized
    for i in range(4):
        instance = out[i]
        assert_allclose(instance.mean(), 0.0, atol=1e-1)
        assert_allclose(instance.std(), 1.0, atol=1e-1)

    # if each instance is normalized, so should the batch
    assert_allclose(out.mean(), 0.0, atol=1e-1)
    assert_allclose(out.std(), 1.0, atol=1e-1) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:27,代碼來源:test_instancenormalization.py

示例6: test_groupnorm_convnet

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_groupnorm_convnet():
    model = Sequential()
    norm = GroupNormalization(axis=1,
                              input_shape=(3, 4, 4),
                              groups=3)
    model.add(norm)
    model.compile(loss='mse', optimizer='sgd')

    # centered on 5.0, variance 10.0
    x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 3, 4, 4))
    model.fit(x, x, epochs=4, verbose=0)
    out = model.predict(x)
    out -= np.reshape(K.eval(norm.beta), (1, 3, 1, 1))
    out /= np.reshape(K.eval(norm.gamma), (1, 3, 1, 1))

    assert_allclose(np.mean(out, axis=(0, 2, 3)), 0.0, atol=1e-1)
    assert_allclose(np.std(out, axis=(0, 2, 3)), 1.0, atol=1e-1) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:19,代碼來源:test_groupnormalization.py

示例7: test_sub_pixel_upscaling

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_sub_pixel_upscaling(scale_factor):
    num_samples = 2
    num_row = 16
    num_col = 16
    input_dtype = K.floatx()

    nb_channels = 4 * (scale_factor ** 2)
    input_data = np.random.random((num_samples, nb_channels, num_row, num_col))
    input_data = input_data.astype(input_dtype)

    if K.image_data_format() == 'channels_last':
        input_data = input_data.transpose((0, 2, 3, 1))

    input_tensor = K.variable(input_data)
    expected_output = K.eval(KC.depth_to_space(input_tensor,
                                               scale=scale_factor))

    layer_test(SubPixelUpscaling,
               kwargs={'scale_factor': scale_factor},
               input_data=input_data,
               expected_output=expected_output,
               expected_output_dtype=K.floatx()) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:24,代碼來源:test_subpixelupscaling.py

示例8: check_composed_tensor_operations

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def check_composed_tensor_operations(first_function_name, first_function_args,
                                     second_function_name, second_function_args,
                                     input_shape):
    ''' Creates a random tensor t0 with shape input_shape and compute
                 t1 = first_function_name(t0, **first_function_args)
                 t2 = second_function_name(t1, **second_function_args)
        with both Theano and TensorFlow backends and ensures the answers match.
    '''
    val = np.random.random(input_shape) - 0.5
    xth = KTH.variable(val)
    xtf = KTF.variable(val)

    yth = getattr(KCTH, first_function_name)(xth, **first_function_args)
    ytf = getattr(KCTF, first_function_name)(xtf, **first_function_args)

    zth = KTH.eval(getattr(KCTH, second_function_name)(yth, **second_function_args))
    ztf = KTF.eval(getattr(KCTF, second_function_name)(ytf, **second_function_args))

    assert zth.shape == ztf.shape
    assert_allclose(zth, ztf, atol=1e-05) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:22,代碼來源:backend_test.py

示例9: test_extract2

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_extract2(self, input_shape, kernel_shape):

        xval = np.random.random(input_shape)

        kernel = [kernel_shape, kernel_shape]
        strides = [kernel_shape, kernel_shape]
        xth = KTH.variable(xval)
        xtf = KTF.variable(xval)
        ztf = KTF.eval(KCTF.extract_image_patches(xtf, kernel, strides,
                                                  data_format='channels_last',
                                                  padding='same'))
        zth = KTH.eval(KCTH.extract_image_patches(xth, kernel, strides,
                                                  data_format='channels_last',
                                                  padding='same'))
        assert zth.shape == ztf.shape
        assert_allclose(zth, ztf, atol=1e-02) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:18,代碼來源:backend_test.py

示例10: test_moments

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_moments(self, keep_dims):
        input_shape = (10, 10, 10, 10)
        x_0 = np.zeros(input_shape)
        x_1 = np.ones(input_shape)
        x_random = np.random.random(input_shape)

        th_axes = [0, 2, 3]
        tf_axes = [0, 1, 2]

        for ip in [x_0, x_1, x_random]:
            for axes in [th_axes, tf_axes]:
                K_mean, K_var = KC.moments(K.variable(ip), axes, keep_dims=keep_dims)
                np_mean, np_var = KCNP.moments(ip, axes, keep_dims=keep_dims)

                K_mean_val = K.eval(K_mean)
                K_var_val = K.eval(K_var)

                # absolute tolerance needed when working with zeros
                assert_allclose(K_mean_val, np_mean, rtol=1e-4, atol=1e-10)
                assert_allclose(K_var_val, np_var, rtol=1e-4, atol=1e-10) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:22,代碼來源:backend_test.py

示例11: test_matching_layers

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_matching_layers():
    s1_value = np.array([[[1, 2], [2, 3], [3, 4]],
                         [[0.1, 0.2], [0.2, 0.3], [0.3, 0.4]]
                        ])
    s2_value = np.array([[[1, 2], [2, 3]],
                         [[0.1, 0.2], [0.2, 0.3]]
                        ])
    s3_value = np.array([[[1, 2], [2, 3]],
                         [[0.1, 0.2], [0.2, 0.3]],
                         [[0.1, 0.2], [0.2, 0.3]]
                        ])
    s1_tensor = K.variable(s1_value)
    s2_tensor = K.variable(s2_value)
    s3_tensor = K.variable(s3_value)
    for matching_type in ['dot', 'mul', 'plus', 'minus', 'concat']:
        model = layers.MatchingLayer(matching_type=matching_type)([s1_tensor, s2_tensor])
        ret = K.eval(model)
    with pytest.raises(ValueError):
        layers.MatchingLayer(matching_type='error')
    with pytest.raises(ValueError):
        layers.MatchingLayer()([s1_tensor, s3_tensor]) 
開發者ID:NTMC-Community,項目名稱:MatchZoo,代碼行數:23,代碼來源:test_layers.py

示例12: test_matching_tensor_layer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_matching_tensor_layer():
    s1_value = np.array([[[1, 2], [2, 3], [3, 4]],
                         [[0.1, 0.2], [0.2, 0.3], [0.3, 0.4]]])
    s2_value = np.array([[[1, 2], [2, 3]],
                         [[0.1, 0.2], [0.2, 0.3]]])
    s3_value = np.array([[[1, 2], [2, 3]],
                         [[0.1, 0.2], [0.2, 0.3]],
                         [[0.1, 0.2], [0.2, 0.3]]])
    s1_tensor = K.variable(s1_value)
    s2_tensor = K.variable(s2_value)
    s3_tensor = K.variable(s3_value)
    for init_diag in [True, False]:
        model = MatchingTensorLayer(init_diag=init_diag)
        _ = K.eval(model([s1_tensor, s2_tensor]))
    with pytest.raises(ValueError):
        MatchingTensorLayer()([s1_tensor, s3_tensor]) 
開發者ID:NTMC-Community,項目名稱:MatchZoo,代碼行數:18,代碼來源:test_layers.py

示例13: test_hinge_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_hinge_loss():
    true_value = K.variable(np.array([[1.2], [1],
                                      [1], [1]]))
    pred_value = K.variable(np.array([[1.2], [0.1],
                                      [0], [-0.3]]))
    expected_loss = (0 + 1 - 0.3 + 0) / 2.0
    loss = K.eval(losses.RankHingeLoss()(true_value, pred_value))
    assert np.isclose(expected_loss, loss)
    expected_loss = (2 + 0.1 - 1.2 + 2 - 0.3 + 0) / 2.0
    loss = K.eval(losses.RankHingeLoss(margin=2)(true_value, pred_value))
    assert np.isclose(expected_loss, loss)
    true_value = K.variable(np.array([[1.2], [1], [0.8],
                                      [1], [1], [0.8]]))
    pred_value = K.variable(np.array([[1.2], [0.1], [-0.5],
                                      [0], [0], [-0.3]]))
    expected_loss = (0 + 1 - 0.15) / 2.0
    loss = K.eval(losses.RankHingeLoss(num_neg=2, margin=1)(
        true_value, pred_value))
    assert np.isclose(expected_loss, loss) 
開發者ID:NTMC-Community,項目名稱:MatchZoo,代碼行數:21,代碼來源:test_losses.py

示例14: test_max_norm

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def test_max_norm():
    array = get_example_array()
    for m in get_test_values():
        norm_instance = constraints.max_norm(m)
        normed = norm_instance(K.variable(array))
        assert(np.all(K.eval(normed) < m))

    # a more explicit example
    norm_instance = constraints.max_norm(2.0)
    x = np.array([[0, 0, 0], [1.0, 0, 0], [3, 0, 0], [3, 3, 3]]).T
    x_normed_target = np.array([[0, 0, 0], [1.0, 0, 0],
                                [2.0, 0, 0],
                                [2. / np.sqrt(3),
                                 2. / np.sqrt(3),
                                 2. / np.sqrt(3)]]).T
    x_normed_actual = K.eval(norm_instance(K.variable(x)))
    assert_allclose(x_normed_actual, x_normed_target, rtol=1e-05) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:19,代碼來源:constraints_test.py

示例15: on_epoch_end

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import eval [as 別名]
def on_epoch_end(self, epoch, logs=None):
        logs.update({'lr': K.eval(self.model.optimizer.lr)})
        super().on_epoch_end(epoch, logs) 
開發者ID:blackmints,項目名稱:3DGCN,代碼行數:5,代碼來源:callback.py


注:本文中的keras.backend.eval方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。