當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.equal方法代碼示例

本文整理匯總了Python中keras.backend.equal方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.equal方法的具體用法?Python backend.equal怎麽用?Python backend.equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: rpn_class_loss_graph

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.
    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Cross entropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
開發者ID:dataiku,項目名稱:dataiku-contrib,代碼行數:24,代碼來源:model.py

示例2: rpn_class_loss_graph

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Cross entropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
開發者ID:dmechea,項目名稱:PanopticSegmentation,代碼行數:25,代碼來源:model.py

示例3: rpn_class_loss_graph

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Crossentropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
開發者ID:SunskyF,項目名稱:EasyPR-python,代碼行數:25,代碼來源:model.py

示例4: _rpn_loss_regr

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def _rpn_loss_regr(y_true, y_pred):
    """
    smooth L1 loss

    y_ture [1][HXWX10][3] (class,regr)
    y_pred [1][HXWX10][2] (reger)
    """

    sigma = 9.0

    cls = y_true[0, :, 0]
    regr = y_true[0, :, 1:3]
    regr_keep = tf.where(K.equal(cls, 1))[:, 0]
    regr_true = tf.gather(regr, regr_keep)
    regr_pred = tf.gather(y_pred[0], regr_keep)
    diff = tf.abs(regr_true - regr_pred)
    less_one = tf.cast(tf.less(diff, 1.0 / sigma), 'float32')
    loss = less_one * 0.5 * diff ** 2 * sigma + tf.abs(1 - less_one) * (diff - 0.5 / sigma)
    loss = K.sum(loss, axis=1)

    return K.switch(tf.size(loss) > 0, K.mean(loss), K.constant(0.0)) 
開發者ID:GlassyWing,項目名稱:text-detection-ocr,代碼行數:23,代碼來源:core.py

示例5: labelembed_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def labelembed_loss(out1, out2, tar, targets, tau = 2., alpha = 0.9, beta = 0.5, num_classes = 100):
    
    out2_prob = K.softmax(out2)
    tau2_prob = K.stop_gradient(K.softmax(out2 / tau))
    soft_tar = K.stop_gradient(K.softmax(tar))
    
    L_o1_y = K.sparse_categorical_crossentropy(output = K.softmax(out1), target = targets)
    
    pred = K.argmax(out2, axis = -1)
    mask = K.stop_gradient(K.cast(K.equal(pred, K.cast(targets, 'int64')), K.floatx()))
    L_o1_emb = -cross_entropy(out1, soft_tar)  # pylint: disable=invalid-unary-operand-type
    
    L_o2_y = K.sparse_categorical_crossentropy(output = out2_prob, target = targets)
    L_emb_o2 = -cross_entropy(tar, tau2_prob) * mask * (K.cast(K.shape(mask)[0], K.floatx())/(K.sum(mask)+1e-8))  # pylint: disable=invalid-unary-operand-type
    L_re = K.relu(K.sum(out2_prob * K.one_hot(K.cast(targets, 'int64'), num_classes), axis = -1) - alpha)
    
    return beta * L_o1_y + (1-beta) * L_o1_emb + L_o2_y + L_emb_o2 + L_re 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:19,代碼來源:learn_labelembedding.py

示例6: f1_score_taskB

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def f1_score_taskB(y_true, y_pred):
    # convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    # where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true * y_pred_ones, axis=0)

    # for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    # for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    # precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred / pred_cnt)

    # recall for each class
    recall = K.switch(K.equal(gold_cnt, 0), 0, y_true_pred / gold_cnt)

    # f1 for each class
    f1_class = K.switch(K.equal(precision + recall, 0), 0, 2 * (precision * recall) / (precision + recall))

    # return average f1 score over all classes
    return f1_class 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:27,代碼來源:evaluation_metrics_tf.py

示例7: precision_keras

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def precision_keras(y_true, y_pred):
    # convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    # where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true * y_pred_ones, axis=0)

    # for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    # precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred / pred_cnt)

    # return average f1 score over all classes
    return K.mean(precision) 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:18,代碼來源:evaluation_metrics_tf.py

示例8: f1_score_taskB

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def f1_score_taskB(y_true, y_pred):
    #convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    #where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true*y_pred_ones, axis=0)

    #for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    #for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    #precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt)

    #recall for each class
    recall = K.switch(K.equal(gold_cnt, 0), 0, y_true_pred/gold_cnt)

    #f1 for each class
    f1_class = K.switch(K.equal(precision + recall, 0), 0, 2*(precision*recall)/(precision+recall))

    #return average f1 score over all classes
    return f1_class 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:27,代碼來源:evaluation_metrics.py

示例9: precision_keras

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def precision_keras(y_true, y_pred):
    #convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    #where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true*y_pred_ones, axis=0)

    #for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    #precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt)
    
    #return average f1 score over all classes
    return K.mean(precision) 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:18,代碼來源:evaluation_metrics.py

示例10: rpn_class_loss_graph

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    '''RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    '''
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Cross entropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
開發者ID:nearthlab,項目名稱:image-segmentation,代碼行數:25,代碼來源:losses.py

示例11: focal_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def focal_loss(y_true, y_pred, gamma=2, alpha=0.25):
    """Compute focal loss.
    
    # Arguments
        y_true: Ground truth targets,
            tensor of shape (?, num_boxes, num_classes).
        y_pred: Predicted logits,
            tensor of shape (?, num_boxes, num_classes).
    
    # Returns
        focal_loss: Focal loss, tensor of shape (?, num_boxes).

    # References
        https://arxiv.org/abs/1708.02002
    """
    #y_pred /= K.sum(y_pred, axis=-1, keepdims=True)
    eps = K.epsilon()
    y_pred = K.clip(y_pred, eps, 1. - eps)
    
    pt = tf.where(tf.equal(y_true, 1), y_pred, 1 - y_pred)
    focal_loss = -tf.reduce_sum(alpha * K.pow(1. - pt, gamma) * K.log(pt), axis=-1)
    return focal_loss 
開發者ID:mogoweb,項目名稱:aiexamples,代碼行數:24,代碼來源:training.py

示例12: customPooling

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def customPooling(x):
    target = x[1]
    inputs = x[0]
    maskVal = 0
    #getting the mask by observing the model's inputs
    mask = K.equal(inputs, maskVal)
    mask = K.all(mask, axis=-1, keepdims=True)

    #inverting the mask for getting the valid steps for each sample
    mask = 1 - K.cast(mask, K.floatx())

    #summing the valid steps for each sample
    stepsPerSample = K.sum(mask, axis=1, keepdims=False)

    #applying the mask to the target (to make sure you are summing zeros below)
    target = target * mask

    #calculating the mean of the steps (using our sum of valid steps as averager)
    means = K.sum(target, axis=1, keepdims=False) / stepsPerSample

    return means 
開發者ID:dessa-oss,項目名稱:fake-voice-detection,代碼行數:23,代碼來源:utils.py

示例13: rpn_class_loss_graph

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for BG/FG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Cross entropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
開發者ID:ctu-geoforall-lab,項目名稱:i.ann.maskrcnn,代碼行數:25,代碼來源:model.py

示例14: softmax_activation

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def softmax_activation(self, mem):
        """Softmax activation."""

        # spiking_samples = k.less_equal(k.random_uniform([self.config.getint(
        #     'simulation', 'batch_size'), 1]), 300 * self.dt / 1000.)
        # spiking_neurons = k.T.repeat(spiking_samples, 10, axis=1)
        # activ = k.T.nnet.softmax(mem)
        # max_activ = k.max(activ, axis=1, keepdims=True)
        # output_spikes = k.equal(activ, max_activ).astype(k.floatx())
        # output_spikes = k.T.set_subtensor(output_spikes[k.equal(
        #     spiking_neurons, 0).nonzero()], 0.)
        # new_and_reset_mem = k.T.set_subtensor(mem[spiking_neurons.nonzero()],
        #                                       0.)
        # self.add_update([(self.mem, new_and_reset_mem)])
        # return output_spikes

        return k.T.mul(k.less_equal(k.random_uniform(mem.shape),
                                    k.softmax(mem)), self.v_thresh) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:20,代碼來源:temporal_mean_rate_theano.py

示例15: rpn_bbox_loss_graph

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import equal [as 別名]
def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox):
    """Return the RPN bounding box loss graph.
    config: the model config object.
    target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))].
        Uses 0 padding to fill in unsed bbox deltas.
    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))]
    """
    # Positive anchors contribute to the loss, but negative and
    # neutral anchors (match value of 0 or -1) don't.
    rpn_match = K.squeeze(rpn_match, -1)
    indices = tf.where(K.equal(rpn_match, 1))

    # Pick bbox deltas that contribute to the loss
    rpn_bbox = tf.gather_nd(rpn_bbox, indices)

    # Trim target bounding box deltas to the same length as rpn_bbox.
    batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1)
    target_bbox = batch_pack_graph(target_bbox, batch_counts,
                                   config.IMAGES_PER_GPU)

    loss = smooth_l1_loss(target_bbox, rpn_bbox)
    
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
開發者ID:dataiku,項目名稱:dataiku-contrib,代碼行數:28,代碼來源:model.py


注:本文中的keras.backend.equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。