當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.dropout方法代碼示例

本文整理匯總了Python中keras.backend.dropout方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.dropout方法的具體用法?Python backend.dropout怎麽用?Python backend.dropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.dropout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: preprocess_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def preprocess_input(self, inputs, training=None):
        if self.window_size > 1:
            inputs = K.temporal_padding(inputs, (self.window_size - 1, 0))
        inputs = K.expand_dims(inputs, 2)  # add a dummy dimension

        output = K.conv2d(inputs, self.kernel, strides=self.strides,
                          padding='valid',
                          data_format='channels_last')
        output = K.squeeze(output, 2)  # remove the dummy dimension
        if self.use_bias:
            output = K.bias_add(output, self.bias, data_format='channels_last')

        if self.dropout is not None and 0. < self.dropout < 1.:
            z = output[:, :, :self.units]
            f = output[:, :, self.units:2 * self.units]
            o = output[:, :, 2 * self.units:]
            f = K.in_train_phase(1 - _dropout(1 - f, self.dropout), f, training=training)
            return K.concatenate([z, f, o], -1)
        else:
            return output 
開發者ID:amansrivastava17,項目名稱:embedding-as-service,代碼行數:22,代碼來源:qrnn.py

示例2: get_constants

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def get_constants(self, inputs, training=None):
        constants = []
        '''if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:'''
        constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants 
開發者ID:wentaozhu,項目名稱:recurrent-attention-for-QA-SQUAD-based-on-keras,代碼行數:22,代碼來源:rnnlayer.py

示例3: step

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def step(self, inputs, states):
        h_tm1 = states[0]  # previous memory
        #B_U = states[1]  # dropout matrices for recurrent units
        #B_W = states[2]
        h_tm1a = K.dot(h_tm1, self.Wa)
        eij = K.dot(K.tanh(h_tm1a + K.dot(inputs[:, :self.h_dim], self.Ua)), self.Va)
        eijs = K.repeat_elements(eij, self.h_dim, axis=1)

        #alphaij = K.softmax(eijs) # batchsize * lenh       h batchsize * lenh * ndim
        #ci = K.permute_dimensions(K.permute_dimensions(self.h, [2,0,1]) * alphaij, [1,2,0])
        #cisum = K.sum(ci, axis=1)
        cisum = eijs*inputs[:, :self.h_dim]
        #print(K.shape(cisum), cisum.shape, ci.shape, self.h.shape, alphaij.shape, x.shape)

        zr = K.sigmoid(K.dot(inputs[:, self.h_dim:], self.Wzr) + K.dot(h_tm1, self.Uzr) + K.dot(cisum, self.Czr))
        zi = zr[:, :self.units]
        ri = zr[:, self.units: 2 * self.units]
        si_ = K.tanh(K.dot(inputs[:, self.h_dim:], self.W) + K.dot(ri*h_tm1, self.U) + K.dot(cisum, self.C))
        si = (1-zi) * h_tm1 + zi * si_
        return si, [si] #h_tm1, [h_tm1] 
開發者ID:wentaozhu,項目名稱:recurrent-attention-for-QA-SQUAD-based-on-keras,代碼行數:22,代碼來源:rnnlayer.py

示例4: preprocess_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def preprocess_input(self, inputs, training=None):
        if self.window_size > 1:
            inputs = K.temporal_padding(inputs, (self.window_size-1, 0))
        inputs = K.expand_dims(inputs, 2)  # add a dummy dimension

        output = K.conv2d(inputs, self.kernel, strides=self.strides,
                          padding='valid',
                          data_format='channels_last')
        output = K.squeeze(output, 2)  # remove the dummy dimension
        if self.use_bias:
            output = K.bias_add(output, self.bias, data_format='channels_last')

        if self.dropout is not None and 0. < self.dropout < 1.:
            z = output[:, :, :self.units]
            f = output[:, :, self.units:2 * self.units]
            o = output[:, :, 2 * self.units:]
            f = K.in_train_phase(1 - _dropout(1 - f, self.dropout), f, training=training)
            return K.concatenate([z, f, o], -1)
        else:
            return output 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:22,代碼來源:qrnn.py

示例5: get_config

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def get_config(self):
        config = {'units': self.units,
                  'window_size': self.window_size,
                  'stride': self.strides[0],
                  'return_sequences': self.return_sequences,
                  'go_backwards': self.go_backwards,
                  'stateful': self.stateful,
                  'unroll': self.unroll,
                  'use_bias': self.use_bias,
                  'dropout': self.dropout,
                  'activation': activations.serialize(self.activation),
                  'kernel_initializer': initializers.serialize(self.kernel_initializer),
                  'bias_initializer': initializers.serialize(self.bias_initializer),
                  'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
                  'bias_regularizer': regularizers.serialize(self.bias_regularizer),
                  'activity_regularizer': regularizers.serialize(self.activity_regularizer),
                  'kernel_constraint': constraints.serialize(self.kernel_constraint),
                  'bias_constraint': constraints.serialize(self.bias_constraint),
                  'input_dim': self.input_dim,
                  'input_length': self.input_length}
        base_config = super(QRNN, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:24,代碼來源:qrnn.py

示例6: step

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def step(self, inputs, states):
        if 0 < self.dropout < 1:
            h = ternarize_dot(inputs * states[1], self.kernel)
        else:
            h = ternarize_dot(inputs, self.kernel)
        if self.bias is not None:
            h = K.bias_add(h, self.bias)

        prev_output = states[0]
        if 0 < self.recurrent_dropout < 1:
            prev_output *= states[2]
        output = h + ternarize_dot(prev_output, self.recurrent_kernel)
        if self.activation is not None:
            output = self.activation(output)

        # Properly set learning phase on output tensor.
        if 0 < self.dropout + self.recurrent_dropout:
            output._uses_learning_phase = True
        return output, [output] 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:21,代碼來源:ternary_layers.py

示例7: get_config

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def get_config(self):
        config = {'units': self.units,
                  'activation': activations.serialize(self.activation),
                  'use_bias': self.use_bias,
                  'kernel_initializer': initializers.serialize(self.kernel_initializer),
                  'recurrent_initializer': initializers.serialize(self.recurrent_initializer),
                  'bias_initializer': initializers.serialize(self.bias_initializer),
                  'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
                  'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer),
                  'bias_regularizer': regularizers.serialize(self.bias_regularizer),
                  'activity_regularizer': regularizers.serialize(self.activity_regularizer),
                  'kernel_constraint': constraints.serialize(self.kernel_constraint),
                  'recurrent_constraint': constraints.serialize(self.recurrent_constraint),
                  'bias_constraint': constraints.serialize(self.bias_constraint),
                  'dropout': self.dropout,
                  'recurrent_dropout': self.recurrent_dropout}
        base_config = super(TT_RNN, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
開發者ID:Tuyki,項目名稱:TT_RNN,代碼行數:20,代碼來源:TTRNN.py

示例8: get_constants

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def get_constants(self, inputs, training=None):
        constants = []
        if 0. < self.recurrent_dropout < 1.:
            ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))

            def dropped_inputs():
                return K.dropout(ones, self.recurrent_dropout)

            rec_dp_mask = [K.in_train_phase(dropped_inputs,
                                            ones,
                                            training=training) for _ in range(3)]
            constants.append(rec_dp_mask)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants 
開發者ID:aspuru-guzik-group,項目名稱:chemical_vae,代碼行數:18,代碼來源:tgru_k2_gpu.py

示例9: preprocess_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def preprocess_input(self, inputs, training=None):
        if self.implementation == 0:
            input_shape = K.int_shape(inputs)
            input_dim = input_shape[2]
            timesteps = input_shape[1]

            x_i = _time_distributed_dense(inputs, self.kernel_i, self.bias_i,
                                          self.dropout, input_dim, self.units,
                                          timesteps, training=training)
            x_f = _time_distributed_dense(inputs, self.kernel_f, self.bias_f,
                                          self.dropout, input_dim, self.units,
                                          timesteps, training=training)
            x_c = _time_distributed_dense(inputs, self.kernel_c, self.bias_c,
                                          self.dropout, input_dim, self.units,
                                          timesteps, training=training)
            x_o = _time_distributed_dense(inputs, self.kernel_o, self.bias_o,
                                          self.dropout, input_dim, self.units,
                                          timesteps, training=training)
            return K.concatenate([x_i, x_f, x_c, x_o], axis=2)
        else:
            return inputs 
開發者ID:fferroni,項目名稱:PhasedLSTM-Keras,代碼行數:23,代碼來源:PhasedLSTM.py

示例10: get_config

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def get_config(self):
        config = {'units': self.units,
                  'activation': activations.serialize(self.activation),
                  'recurrent_activation': activations.serialize(self.recurrent_activation),
                  'use_bias': self.use_bias,
                  'kernel_initializer': initializers.serialize(self.kernel_initializer),
                  'recurrent_initializer': initializers.serialize(self.recurrent_initializer),
                  'bias_initializer': initializers.serialize(self.bias_initializer),
                  'unit_forget_bias': self.unit_forget_bias,
                  'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
                  'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer),
                  'bias_regularizer': regularizers.serialize(self.bias_regularizer),
                  'activity_regularizer': regularizers.serialize(self.activity_regularizer),
                  'kernel_constraint': constraints.serialize(self.kernel_constraint),
                  'recurrent_constraint': constraints.serialize(self.recurrent_constraint),
                  'bias_constraint': constraints.serialize(self.bias_constraint),
                  'dropout': self.dropout,
                  'recurrent_dropout': self.recurrent_dropout}
        base_config = super(PhasedLSTM, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
開發者ID:fferroni,項目名稱:PhasedLSTM-Keras,代碼行數:22,代碼來源:PhasedLSTM.py

示例11: zoneout

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def zoneout(self, v, prev_v, pr=0.):
    diff = v - prev_v
    diff = K.in_train_phase(K.dropout(diff, pr, noise_shape=(self.output_dim,)), diff)
    # In testing, always return v * (1-pr) + prev_v * pr
    # In training when K.dropout returns 0, return prev_v
    #             when K.dropout returns diff/(1-pr), return v
    return prev_v + diff * (1-pr) 
開發者ID:LaurentMazare,項目名稱:deep-models,代碼行數:9,代碼來源:lstm_zoneout.py

示例12: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def call(self, x, mask=None):
        if 0. < self.p < 1.:
            noise_shape = self._get_noise_shape(x)
            x = K.dropout(x, self.p, noise_shape)
        return x 
開發者ID:codekansas,項目名稱:gandlf,代碼行數:7,代碼來源:core.py

示例13: Dropout_mc

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def Dropout_mc(p):
    layer = Lambda(lambda x: K.dropout(x, p), output_shape=lambda shape: shape)
    return layer 
開發者ID:YingzhenLi,項目名稱:Dropout_BBalpha,代碼行數:5,代碼來源:BBalpha_dropout.py

示例14: get_logit_mlp_layers

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def get_logit_mlp_layers(nb_layers, nb_units, p, wd, nb_classes, layers = [], \
                         dropout = 'none'):
    if dropout == 'MC':
        D = Dropout_mc
    if dropout == 'pW':
        D = pW
    if dropout == 'none':
        D = Identity

    for _ in xrange(nb_layers):
        layers.append(D(p))
        layers.append(Dense(nb_units, activation='relu', W_regularizer=l2(wd)))
    layers.append(D(p))
    layers.append(Dense(nb_classes, W_regularizer=l2(wd)))
    return layers 
開發者ID:YingzhenLi,項目名稱:Dropout_BBalpha,代碼行數:17,代碼來源:BBalpha_dropout.py

示例15: get_logit_cnn_layers

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import dropout [as 別名]
def get_logit_cnn_layers(nb_units, p, wd, nb_classes, layers = [], dropout = False):
    # number of convolutional filters to use
    nb_filters = 32
    # size of pooling area for max pooling
    pool_size = (2, 2)
    # convolution kernel size
    kernel_size = (3, 3)

    if dropout == 'MC':
        D = Dropout_mc
    if dropout == 'pW':
        D = pW
    if dropout == 'none':
        D = Identity

    layers.append(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
                                border_mode='valid', W_regularizer=l2(wd)))
    layers.append(Activation('relu'))
    layers.append(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
                                W_regularizer=l2(wd)))
    layers.append(Activation('relu'))
    layers.append(MaxPooling2D(pool_size=pool_size))

    layers.append(Flatten())
    layers.append(D(p))
    layers.append(Dense(nb_units, W_regularizer=l2(wd)))
    layers.append(Activation('relu'))
    layers.append(D(p))
    layers.append(Dense(nb_classes, W_regularizer=l2(wd)))
    return layers 
開發者ID:YingzhenLi,項目名稱:Dropout_BBalpha,代碼行數:32,代碼來源:BBalpha_dropout.py


注:本文中的keras.backend.dropout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。