本文整理匯總了Python中keras.backend.cumsum方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.cumsum方法的具體用法?Python backend.cumsum怎麽用?Python backend.cumsum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.cumsum方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Mask
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def Mask(self, inputs, seq_len, mode='mul'):
"""
# Arguments:
inputs: input tensor with shape (batch_size, seq_len, input_size)
seq_len: Each sequence's actual length with shape (batch_size,)
mode:
mul: mask the rest dim with zero, used before fully-connected layer
add: subtract a big constant from the rest, used before softmax layer
# Reutrns:
Masked tensors with the same shape of input tensor
"""
if seq_len is None:
return inputs
else:
mask = K.one_hot(seq_len[:, 0], K.shape(inputs)[1])
mask = 1 - K.cumsum(mask, 1)
for _ in range(len(inputs.shape) - 2):
mask = K.expand_dims(mask, 2)
if mode == 'mul':
return inputs * mask
if mode == 'add':
return inputs - (1 - mask) * 1e12
示例2: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def call(self, x):
if (self.size is None) or (self.mode == 'sum'):
self.size = int(x.shape[-1])
batch_size, seq_len = K.shape(x)[0], K.shape(x)[1]
position_j = 1. / K.pow(10000.,
2 * K.arange(self.size / 2, dtype='float32'
) / self.size)
position_j = K.expand_dims(position_j, 0)
# K.arange不支持變長,隻好用這種方法生成
position_i = K.cumsum(K.ones_like(x[:, :, 0]), 1) - 1
position_i = K.expand_dims(position_i, 2)
position_ij = K.dot(position_i, position_j)
position_ij = K.concatenate(
[K.cos(position_ij), K.sin(position_ij)], 2)
if self.mode == 'sum':
return position_ij + x
elif self.mode == 'concat':
return K.concatenate([position_ij, x], 2)
示例3: output_sampling
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def output_sampling(self, output, rand_matrix):
# Generates a sampled selection based on raw output state vector
# Creates a cdf vector and compares against a randomly generated vector
# Requires a pre-generated rand_matrix (i.e. generated outside step function)
sampled_output = output / K.sum(output, axis=-1, keepdims=True) # (batch_size, self.units)
mod_sampled_output = sampled_output / K.exp(self.temperature)
norm_exp_sampled_output = mod_sampled_output / K.sum(mod_sampled_output, axis=-1, keepdims=True)
cdf_vector = K.cumsum(norm_exp_sampled_output, axis=-1)
cdf_minus_vector = cdf_vector - norm_exp_sampled_output
rand_matrix = K.stack([rand_matrix], axis=0)
rand_matrix = K.stack([rand_matrix], axis=2)
compared_greater_output = K.cast(K.greater(cdf_vector, rand_matrix), dtype='float32')
compared_lesser_output = K.cast(K.less(cdf_minus_vector, rand_matrix), dtype='float32')
final_output = compared_greater_output * compared_lesser_output
return final_output
示例4: _get_pos_seq
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def _get_pos_seq(x, null_token_value=0):
mask = K.cast(K.not_equal(x, null_token_value), 'float32')
pos = K.cumsum(K.ones_like(x, 'float32'), 1)
return pos * mask
示例5: earth_mover_loss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def earth_mover_loss(y_true, y_pred):
cdf_ytrue = K.cumsum(y_true, axis=-1)
cdf_ypred = K.cumsum(y_pred, axis=-1)
samplewise_emd = K.sqrt(K.mean(K.square(K.abs(cdf_ytrue - cdf_ypred)), axis=-1))
return K.mean(samplewise_emd)
示例6: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def call(self, inputs, mask=None):
# pylint: disable=redefined-variable-type
# This section implements the positional encoder on all the vectors at once.
# The general idea is to use ones matrices in the shape of `inputs` to create indexes per
# word.
if mask is None:
ones_like_x = K.ones_like(inputs)
else:
float_mask = K.cast(mask, 'float32')
ones_like_x = K.ones_like(inputs) * K.expand_dims(float_mask, 2)
# This is an odd way to get the number of words(ie the first dimension of inputs).
# However, if the input is masked, using the dimension directly does not
# equate to the correct number of words. We fix this by adding up a relevant
# row of ones which has been masked if required.
masked_m = K.expand_dims(K.sum(ones_like_x, 1), 1)
if mask is None:
one_over_m = ones_like_x / masked_m
j_index = K.cumsum(ones_like_x, 1)
else:
one_over_m = switch(ones_like_x, ones_like_x/masked_m, K.zeros_like(ones_like_x))
j_index = K.cumsum(ones_like_x, 1) * K.expand_dims(float_mask, 2)
k_over_d = K.cumsum(ones_like_x, 2) * 1.0/K.cast(K.shape(inputs)[2], 'float32')
l_weighting_vectors = (ones_like_x - (j_index * one_over_m)) - \
(k_over_d * (ones_like_x - 2 * j_index * one_over_m))
return K.sum(l_weighting_vectors * inputs, 1)
示例7: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def call(self, inputs, mask=None):
span_begin, span_end = inputs
after_span_begin = K.cumsum(span_begin, axis=-1)
after_span_end = K.cumsum(span_end, axis=-1)
before_span_end = 1.0 - after_span_end
return after_span_begin * before_span_end
示例8: sequence_mask
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def sequence_mask(seq):
"""
:param seq: shape of [N, T_q]
:return:
"""
seq_len = K.shape(seq)[1]
batch_size = K.shape(seq)[:1]
return K.cast(K.cumsum(tf.eye(seq_len, batch_shape=batch_size), axis=1), dtype='float32')
示例9: get_pos_seq
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def get_pos_seq(self, x):
mask = K.cast(K.not_equal(x, 0), dtype="int32")
pos = K.cumsum(K.ones_like(x, dtype='int32'), axis=1)
return mask * pos
示例10: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def call(self, x):
if (self.size == None) or (self.mode == 'sum'):
self.size = int(x.shape[-1])
batch_size, seq_len = K.shape(x)[0], K.shape(x)[1]
position_j = 1. / K.pow(10000., 2 * K.arange(self.size / 2, dtype='float32') / self.size)
position_j = K.expand_dims(position_j, 0)
position_i = K.cumsum(K.ones_like(x[:, :, 0]), 1) - 1 # K.arange不支持變長,隻好用這種方法生成
position_i = K.expand_dims(position_i, 2)
position_ij = K.dot(position_i, position_j)
position_ij = K.concatenate([K.cos(position_ij), K.sin(position_ij)], 2)
if self.mode == 'sum':
return position_ij + x
elif self.mode == 'concat':
return K.concatenate([position_ij, x], 2)
示例11: Mask
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cumsum [as 別名]
def Mask(self, inputs, seq_len, mode='mul'):
if seq_len == None:
return inputs
else:
mask = K.one_hot(seq_len[:, 0], K.shape(inputs)[1])
mask = 1 - K.cumsum(mask, 1)
for _ in range(len(inputs.shape) - 2):
mask = K.expand_dims(mask, 2)
if mode == 'mul':
return inputs * mask
if mode == 'add':
return inputs - (1 - mask) * 1e12