當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.cos方法代碼示例

本文整理匯總了Python中keras.backend.cos方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.cos方法的具體用法?Python backend.cos怎麽用?Python backend.cos使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.cos方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: euler2rot_mat

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def euler2rot_mat(euler_angles):
    """
    Convert euler to rotation matrix, using the XYZ convention R = Rx * Ry * Rz, left-handed positive sign
    (from Openface)
    :param euler_angles: euler angles
    :return: rotation matrix
    """
    s1 = np.sin(euler_angles[0])
    s2 = np.sin(euler_angles[1])
    s3 = np.sin(euler_angles[2])
    c1 = np.cos(euler_angles[0])
    c2 = np.cos(euler_angles[1])
    c3 = np.cos(euler_angles[2])

    rot_mat = np.empty((3,3), dtype=np.float32)
    rot_mat[0, 0] = c2 * c3
    rot_mat[0, 1] = -c2 * s3
    rot_mat[0, 2] = s2
    rot_mat[1, 0] = c1 * s3 + c3 * s1 * s2
    rot_mat[1, 1] = c1 * c3 - s1 * s2 * s3
    rot_mat[1, 2] = -c2 * s1
    rot_mat[2, 0] = s1 * s3 - c1 * c3 * s2
    rot_mat[2, 1] = c3 * s1 + c1 * s2 * s3
    rot_mat[2, 2] = c1 * c2
    return np.linalg.inv(rot_mat) 
開發者ID:crisie,項目名稱:RecurrentGaze,代碼行數:27,代碼來源:data_utils.py

示例2: positional_signal

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def positional_signal(hidden_size: int, length: int,
                      min_timescale: float = 1.0, max_timescale: float = 1e4):
    """
    Helper function, constructing basic positional encoding.
    The code is partially based on implementation from Tensor2Tensor library
    https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/layers/common_attention.py
    """

    if hidden_size % 2 != 0:
        raise ValueError(
            f"The hidden dimension of the model must be divisible by 2."
            f"Currently it is {hidden_size}")
    position = K.arange(0, length, dtype=K.floatx())
    num_timescales = hidden_size // 2
    log_timescale_increment = K.constant(
        (np.log(float(max_timescale) / float(min_timescale)) /
         (num_timescales - 1)),
        dtype=K.floatx())
    inv_timescales = (
            min_timescale *
            K.exp(K.arange(num_timescales, dtype=K.floatx()) *
                  -log_timescale_increment))
    scaled_time = K.expand_dims(position, 1) * K.expand_dims(inv_timescales, 0)
    signal = K.concatenate([K.sin(scaled_time), K.cos(scaled_time)], axis=1)
    return K.expand_dims(signal, axis=0) 
開發者ID:kpot,項目名稱:keras-transformer,代碼行數:27,代碼來源:position.py

示例3: test_saving_custom_activation_function

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def test_saving_custom_activation_function():
    x = Input(shape=(3,))
    output = Dense(3, activation=K.cos)(x)

    model = Model(x, output)
    model.compile(loss=losses.MSE,
                  optimizer=optimizers.RMSprop(lr=0.0001),
                  metrics=[metrics.categorical_accuracy])
    x = np.random.random((1, 3))
    y = np.random.random((1, 3))
    model.train_on_batch(x, y)

    out = model.predict(x)
    _, fname = tempfile.mkstemp('.h5')
    save_model(model, fname)

    model = load_model(fname, custom_objects={'cos': K.cos})
    os.remove(fname)

    out2 = model.predict(x)
    assert_allclose(out, out2, atol=1e-05) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:23,代碼來源:test_model_saving.py

示例4: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def call(self, x):
        if (self.size is None) or (self.mode == 'sum'):
            self.size = int(x.shape[-1])
        batch_size, seq_len = K.shape(x)[0], K.shape(x)[1]
        position_j = 1. / K.pow(10000.,
                                2 * K.arange(self.size / 2, dtype='float32'
                                             ) / self.size)
        position_j = K.expand_dims(position_j, 0)
        # K.arange不支持變長,隻好用這種方法生成
        position_i = K.cumsum(K.ones_like(x[:, :, 0]), 1) - 1
        position_i = K.expand_dims(position_i, 2)
        position_ij = K.dot(position_i, position_j)
        position_ij = K.concatenate(
            [K.cos(position_ij), K.sin(position_ij)], 2)
        if self.mode == 'sum':
            return position_ij + x
        elif self.mode == 'concat':
            return K.concatenate([position_ij, x], 2) 
開發者ID:stevewyl,項目名稱:nlp_toolkit,代碼行數:20,代碼來源:position_embedding.py

示例5: _rotation_y

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def _rotation_y(theta):
    r1 = K.cos(theta[:,0:1])
    r2 = K.sin(theta[:,0:1])
    zero = K.zeros_like(r1)
    one = K.ones_like(r1)
    first = K.reshape(K.concatenate([r1,zero,r2,zero],axis=1),(-1,1,4))
    second = K.reshape(K.concatenate([zero,one,zero,zero],axis=1),(-1,1,4))
    third = K.reshape(K.concatenate([-r2,zero,r1,zero],axis=1),(-1,1,4))
    fourth = K.reshape(K.concatenate([zero,zero,zero,one],axis=1),(-1,1,4))
    rotation_y = K.concatenate([first,second,third,fourth],axis=1)
    rotation_y = T.reshape(rotation_y,[-1,4,4])
    return rotation_y 
開發者ID:microsoft,項目名稱:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代碼行數:14,代碼來源:transform_rnn.py

示例6: _rotation_x

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def _rotation_x(theta):
    r1 = K.cos(theta[:,1:2])
    r2 = K.sin(theta[:,1:2])
    zero = K.zeros_like(r1)
    one = K.ones_like(r1)
    first = K.reshape(K.concatenate([one,zero,zero,zero],axis=1),(-1,1,4))
    second = K.reshape(K.concatenate([zero,r1,-r2,zero],axis=1),(-1,1,4))
    third = K.reshape(K.concatenate([zero,r2,r1,zero],axis=1),(-1,1,4))
    fourth = K.reshape(K.concatenate([zero,zero,zero,one],axis=1),(-1,1,4))
    rotation_x = K.concatenate([first,second,third,fourth],axis=1)
    rotation_x = T.reshape(rotation_x,[-1,4,4])
    return rotation_x 
開發者ID:microsoft,項目名稱:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代碼行數:14,代碼來源:transform_rnn.py

示例7: _rotation_z

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def _rotation_z(theta):
    r1 = K.cos(theta[:,2:3])
    r2 = K.sin(theta[:,2:3])
    zero = K.zeros_like(r1)
    one = K.ones_like(r1)
    first = K.reshape(K.concatenate([r1,-r2,zero,zero],axis=1),(-1,1,4))
    second = K.reshape(K.concatenate([r2,r1,zero,zero],axis=1),(-1,1,4))
    third = K.reshape(K.concatenate([zero,zero,one,zero],axis=1),(-1,1,4))
    fourth = K.reshape(K.concatenate([zero,zero,zero,one],axis=1),(-1,1,4))
    rotation_z = K.concatenate([first,second,third,fourth],axis=1)
    rotation_z = T.reshape(rotation_z,[-1,4,4])
    return rotation_z 
開發者ID:microsoft,項目名稱:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代碼行數:14,代碼來源:transform_rnn.py

示例8: angles2vector

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def angles2vector(angles):
    """
    Convert 2D angle (yaw and pitch) to 3D unit vector
    :param angles: list of 2D angles
    :return: computed 3D vectors
    """
    x = (-1.0) * K.sin(angles[:, 0]) * K.cos(angles[:, 1])
    y = (-1.0) * K.sin(angles[:, 1])
    z = (-1.0) * K.cos(angles[:, 0]) * K.cos(angles[:, 1])
    vec = K.transpose(K.concatenate([[x], [y], [z]], axis=0))
    return vec 
開發者ID:crisie,項目名稱:RecurrentGaze,代碼行數:13,代碼來源:data_utils.py

示例9: numpy_angles2vector

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def numpy_angles2vector(angles):
    """
    Numpy version of angles2vector. Convert 2D angle (yaw and pitch) to 3D unit vector
    :param angles: list of 2D angles
    :return: computed 3D vectors
    """
    x = (-1.0)*np.sin(angles[:, 0]) * np.cos(angles[:, 1])
    y = (-1.0)*np.sin(angles[:, 1])
    z = (-1.0)*np.cos(angles[:, 0]) * np.cos(angles[:, 1])
    vec = np.transpose(np.concatenate([[x], [y], [z]], axis=0))
    return vec 
開發者ID:crisie,項目名稱:RecurrentGaze,代碼行數:13,代碼來源:data_utils.py

示例10: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def call(self, inputs, mask=None):
        input_shape = K.shape(inputs)
        if self.mode == self.MODE_ADD:
            batch_size, seq_len, output_dim = input_shape[0], input_shape[1], input_shape[2]
            pos_input = K.tile(K.expand_dims(K.arange(seq_len), axis=0), [batch_size, 1])
        elif self.mode == self.MODE_CONCAT:
            batch_size, seq_len, output_dim = input_shape[0], input_shape[1], self.output_dim
            pos_input = K.tile(K.expand_dims(K.arange(seq_len), axis=0), [batch_size, 1])
        else:
            output_dim = self.output_dim
            pos_input = inputs
        if K.dtype(pos_input) != K.floatx():
            pos_input = K.cast(pos_input, K.floatx())
        evens = K.arange(output_dim // 2) * 2
        odds = K.arange(output_dim // 2) * 2 + 1
        even_embd = K.sin(
            K.dot(
                K.expand_dims(pos_input, -1),
                K.expand_dims(1.0 / K.pow(
                    10000.0,
                    K.cast(evens, K.floatx()) / K.cast(output_dim, K.floatx())
                ), 0)
            )
        )
        odd_embd = K.cos(
            K.dot(
                K.expand_dims(pos_input, -1),
                K.expand_dims(1.0 / K.pow(
                    10000.0, K.cast((odds - 1), K.floatx()) / K.cast(output_dim, K.floatx())
                ), 0)
            )
        )
        embd = K.stack([even_embd, odd_embd], axis=-1)
        output = K.reshape(embd, [-1, K.shape(inputs)[1], output_dim])
        if self.mode == self.MODE_CONCAT:
            output = K.concatenate([inputs, output], axis=-1)
        if self.mode == self.MODE_ADD:
            output += inputs
        return output 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:41,代碼來源:triangle_position_embedding.py

示例11: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def call(self, Z):
        m = self.epsilon * (K.sin(Z) - K.cos(Z))
        A = K.maximum(m, Z)
        return A 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:6,代碼來源:sinerelu.py

示例12: parse_example_proto

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def parse_example_proto(examples_serialized, have_image_id=False):
    feature_map = {
        'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                            default_value=''),
        'image/filename': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
        'image/height': tf.FixedLenFeature([], dtype=tf.int64),
        'image/width': tf.FixedLenFeature([], dtype=tf.int64)
    }

    # TODO(ahundt) remove boolean once we are set up with k-fold cross validation of images and objects
    if have_image_id:
        feature_map['object/id'] = tf.FixedLenFeature([], dtype=tf.int64)

    for i in range(4):
        y_key = 'bbox/y' + str(i)
        x_key = 'bbox/x' + str(i)
        feature_map[y_key] = tf.VarLenFeature(dtype=tf.float32)
        feature_map[x_key] = tf.VarLenFeature(dtype=tf.float32)
    feature_map['bbox/cy'] = tf.VarLenFeature(dtype=tf.float32)
    feature_map['bbox/cx'] = tf.VarLenFeature(dtype=tf.float32)
    feature_map['bbox/tan'] = tf.VarLenFeature(dtype=tf.float32)
    feature_map['bbox/theta'] = tf.VarLenFeature(dtype=tf.float32)
    feature_map['bbox/sin_theta'] = tf.VarLenFeature(dtype=tf.float32)
    feature_map['bbox/cos_theta'] = tf.VarLenFeature(dtype=tf.float32)
    feature_map['bbox/width'] = tf.VarLenFeature(dtype=tf.float32)
    feature_map['bbox/height'] = tf.VarLenFeature(dtype=tf.float32)
    feature_map['bbox/grasp_success'] = tf.VarLenFeature(dtype=tf.int64)
    # feature_map['bbox/sin_2_theta'] = tf.sin(feature_map['bbox/theta'] * 2.0)
    # feature_map['bbox/cos_2_theta'] = tf.cos(feature_map['bbox/theta'] * 2.0)

    features = tf.parse_single_example(examples_serialized, feature_map)

    return features 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:36,代碼來源:cornell_grasp_dataset_reader.py

示例13: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def __init__(self, loss_function, lats, data_format='channels_last', weighting='cosine'):
        """
        Initialize a weighted loss.

        :param loss_function: method: Keras loss function to apply after the weighting
        :param lats: ndarray: 1-dimensional array of latitude coordinates
        :param data_format: Keras data_format ('channels_first' or 'channels_last')
        :param weighting: str: type of weighting to apply. Options are:
            cosine: weight by the cosine of the latitude (default)
            midlatitude: weight by the cosine of the latitude but also apply a 25% reduction to the equator and boost
                to the mid-latitudes
        """
        self.loss_function = loss_function
        self.lats = lats
        self.data_format = K.normalize_data_format(data_format)
        if weighting not in ['cosine', 'midlatitude']:
            raise ValueError("'weighting' must be one of 'cosine' or 'midlatitude'")
        self.weighting = weighting
        lat_tensor = K.zeros(lats.shape)
        print(lats)
        lat_tensor.assign(K.cast_to_floatx(lats[:]))
        self.weights = K.cos(lat_tensor * np.pi / 180.)
        if self.weighting == 'midlatitude':
            self.weights = self.weights - 0.25 * K.sin(lat_tensor * 2 * np.pi / 180.)
        self.is_init = False

        self.__name__ = 'latitude_weighted_loss' 
開發者ID:jweyn,項目名稱:DLWP,代碼行數:29,代碼來源:custom.py

示例14: latitude_weighted_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def latitude_weighted_loss(loss_function=mean_squared_error, lats=None, output_shape=(), axis=-2, weighting='cosine'):
    """
    Create a loss function that weights inputs by a function of latitude before calculating the loss.

    :param loss_function: method: Keras loss function to apply after the weighting
    :param lats: ndarray: 1-dimensional array of latitude coordinates
    :param output_shape: tuple: shape of expected model output
    :param axis: int: latitude axis in model output shape
    :param weighting: str: type of weighting to apply. Options are:
            cosine: weight by the cosine of the latitude (default)
            midlatitude: weight by the cosine of the latitude but also apply a 25% reduction to the equator and boost
                to the mid-latitudes
    :return: callable loss function
    """
    if weighting not in ['cosine', 'midlatitude']:
        raise ValueError("'weighting' must be one of 'cosine' or 'midlatitude'")
    if lats is not None:
        lat_tensor = K.zeros(lats.shape)
        lat_tensor.assign(K.cast_to_floatx(lats[:]))

        weights = K.cos(lat_tensor * np.pi / 180.)
        if weighting == 'midlatitude':
            weights = weights + 0.5 * K.pow(K.sin(lat_tensor * 2 * np.pi / 180.), 2.)

        weight_shape = output_shape[axis:]
        for d in weight_shape[1:]:
            weights = K.expand_dims(weights, axis=-1)
            weights = K.repeat_elements(weights, d, axis=-1)

    else:
        weights = K.ones(output_shape)

    def lat_loss(y_true, y_pred):
        return loss_function(y_true * weights, y_pred * weights)

    return lat_loss 
開發者ID:jweyn,項目名稱:DLWP,代碼行數:38,代碼來源:custom.py

示例15: seasonality_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import cos [as 別名]
def seasonality_model(thetas, backcast_length, forecast_length, is_forecast):
    p = thetas.get_shape().as_list()[-1]
    p1, p2 = (p // 2, p // 2) if p % 2 == 0 else (p // 2, p // 2 + 1)
    t = linear_space(backcast_length, forecast_length, fwd_looking=is_forecast)
    s1 = K.stack([K.cos(2 * np.pi * i * t) for i in range(p1)], axis=0)
    s2 = K.stack([K.sin(2 * np.pi * i * t) for i in range(p2)], axis=0)
    if p == 1:
        s = s2
    else:
        s = K.concatenate([s1, s2], axis=0)
    s = K.cast(s, np.float32)
    return K.dot(thetas, s) 
開發者ID:philipperemy,項目名稱:n-beats,代碼行數:14,代碼來源:model.py


注:本文中的keras.backend.cos方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。