本文整理匯總了Python中keras.backend.conv3d方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.conv3d方法的具體用法?Python backend.conv3d怎麽用?Python backend.conv3d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.conv3d方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv3d [as 別名]
def call(self, inputs):
input_shape = K.shape(inputs)
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
if input_shape[channel_axis] is None:
raise ValueError('The channel dimension of the inputs '
'should be defined. Found `None`.')
input_dim = input_shape[channel_axis]
ker_shape = self.kernel_size + (input_dim, self.filters)
nb_kernels = ker_shape[-2] * ker_shape[-1]
kernel_shape_4_norm = (np.prod(self.kernel_size), nb_kernels)
reshaped_kernel = K.reshape(self.kernel, kernel_shape_4_norm)
normalized_weight = K.l2_normalize(reshaped_kernel, axis=0, epsilon=self.epsilon)
normalized_weight = K.reshape(self.gamma, (1, ker_shape[-2] * ker_shape[-1])) * normalized_weight
shaped_kernel = K.reshape(normalized_weight, ker_shape)
shaped_kernel._keras_shape = ker_shape
convArgs = {"strides": self.strides[0] if self.rank == 1 else self.strides,
"padding": self.padding,
"data_format": self.data_format,
"dilation_rate": self.dilation_rate[0] if self.rank == 1 else self.dilation_rate}
convFunc = {1: K.conv1d,
2: K.conv2d,
3: K.conv3d}[self.rank]
output = convFunc(inputs, shaped_kernel, **convArgs)
if self.use_bias:
output = K.bias_add(
output,
self.bias,
data_format=self.data_format
)
if self.activation is not None:
output = self.activation(output)
return output
示例2: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv3d [as 別名]
def call(self, inputs, training=None):
def _l2normalize(v, eps=1e-12):
return v / (K.sum(v ** 2) ** 0.5 + eps)
def power_iteration(W, u):
#Accroding the paper, we only need to do power iteration one time.
_u = u
_v = _l2normalize(K.dot(_u, K.transpose(W)))
_u = _l2normalize(K.dot(_v, W))
return _u, _v
#Spectral Normalization
W_shape = self.kernel.shape.as_list()
#Flatten the Tensor
W_reshaped = K.reshape(self.kernel, [-1, W_shape[-1]])
_u, _v = power_iteration(W_reshaped, self.u)
#Calculate Sigma
sigma=K.dot(_v, W_reshaped)
sigma=K.dot(sigma, K.transpose(_u))
#normalize it
W_bar = W_reshaped / sigma
#reshape weight tensor
if training in {0, False}:
W_bar = K.reshape(W_bar, W_shape)
else:
with tf.control_dependencies([self.u.assign(_u)]):
W_bar = K.reshape(W_bar, W_shape)
outputs = K.conv3d(
inputs,
W_bar,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate)
if self.use_bias:
outputs = K.bias_add(
outputs,
self.bias,
data_format=self.data_format)
if self.activation is not None:
return self.activation(outputs)
return outputs
示例3: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv3d [as 別名]
def call(self, input_tensor, training=None):
input_transposed = tf.transpose(input_tensor, [0, 3, 4, 1, 2])
input_shape = K.shape(input_transposed)
input_tensor_reshaped = K.reshape(input_tensor, [input_shape[0], 1, self.input_num_capsule * self.input_num_atoms, self.input_height, self.input_width])
input_tensor_reshaped.set_shape((None, 1, self.input_num_capsule * self.input_num_atoms, self.input_height, self.input_width))
# conv = Conv3D(input_tensor_reshaped, self.W, (self.strides, self.strides),
# padding=self.padding, data_format='channels_first')
conv = K.conv3d(input_tensor_reshaped, self.W, strides=(self.input_num_atoms, self.strides, self.strides), padding=self.padding, data_format='channels_first')
votes_shape = K.shape(conv)
_, _, _, conv_height, conv_width = conv.get_shape()
conv = tf.transpose(conv, [0, 2, 1, 3, 4])
votes = K.reshape(conv, [input_shape[0], self.input_num_capsule, self.num_capsule, self.num_atoms, votes_shape[3], votes_shape[4]])
votes.set_shape((None, self.input_num_capsule, self.num_capsule, self.num_atoms, conv_height.value, conv_width.value))
logit_shape = K.stack([input_shape[0], self.input_num_capsule, self.num_capsule, votes_shape[3], votes_shape[4]])
biases_replicated = K.tile(self.b, [1, 1, conv_height.value, conv_width.value])
activations = update_routing(
votes=votes,
biases=biases_replicated,
logit_shape=logit_shape,
num_dims=6,
input_dim=self.input_num_capsule,
output_dim=self.num_capsule,
num_routing=self.routings)
a2 = tf.transpose(activations, [0, 3, 4, 1, 2])
return a2
示例4: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv3d [as 別名]
def call(self, inputs):
channel_axis = 1 if self.data_format == 'channels_first' else -1
input_dim = K.shape(inputs)[channel_axis] // 4
index2 = self.filters*2
index3 = self.filters*3
if self.rank == 1:
f_r = self.kernel[:, :, :self.filters]
f_i = self.kernel[:, :, self.filters:index2]
f_j = self.kernel[:, :, index2:index3]
f_k = self.kernel[:, :, index3:]
elif self.rank == 2:
f_r = self.kernel[:, :, :, :self.filters]
f_i = self.kernel[:, :, :, self.filters:index2]
f_j = self.kernel[:, :, :, index2:index3]
f_k = self.kernel[:, :, :, index3:]
elif self.rank == 3:
f_r = self.kernel[:, :, :, :, :self.filters]
f_i = self.kernel[:, :, :, :, self.filters:index2]
f_j = self.kernel[:, :, :, :, index2:index3]
f_k = self.kernel[:, :, :, :, index3:]
convArgs = {"strides": self.strides[0] if self.rank == 1 else self.strides,
"padding": self.padding,
"data_format": self.data_format,
"dilation_rate": self.dilation_rate[0] if self.rank == 1 else self.dilation_rate}
convFunc = {1: K.conv1d,
2: K.conv2d,
3: K.conv3d}[self.rank]
#
# Performing quaternion convolution
#
f_r._keras_shape = self.kernel_shape
f_i._keras_shape = self.kernel_shape
f_j._keras_shape = self.kernel_shape
f_k._keras_shape = self.kernel_shape
cat_kernels_4_r = K.concatenate([f_r, -f_i, -f_j, -f_k], axis=-2)
cat_kernels_4_i = K.concatenate([f_i, f_r, -f_k, f_j], axis=-2)
cat_kernels_4_j = K.concatenate([f_j, f_k, f_r, -f_i], axis=-2)
cat_kernels_4_k = K.concatenate([f_k, -f_j, f_i, f_r], axis=-2)
cat_kernels_4_quaternion = K.concatenate([cat_kernels_4_r, cat_kernels_4_i, cat_kernels_4_j, cat_kernels_4_k], axis=-1)
cat_kernels_4_quaternion._keras_shape = self.kernel_size + (4 * input_dim, 4 * self.filters)
output = convFunc(inputs, cat_kernels_4_quaternion, **convArgs)
if self.use_bias:
output = K.bias_add(
output,
self.bias,
data_format=self.data_format
)
if self.activation is not None:
output = self.activation(output)
return output
開發者ID:Orkis-Research,項目名稱:Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition,代碼行數:60,代碼來源:conv.py
示例5: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv3d [as 別名]
def call(self, inputs, mask=None):
# compute channels_firste candidate hidden state
# Arguments
'''
x: Tensor or variable.
kernel: kernel tensor.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow/CNTK data format
for inputs/kernels/outputs.
dilation_rate: tuple of 3 integers.
'''
transform = K.conv3d(
inputs,
self.kernel,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate)
if self.use_bias:
transform = K.bias_add(
transform,
self.bias,
data_format=self.data_format)
if self.activation is not None:
transform = self.activation(transform)
transform_gate = K.conv3d(
inputs,
self.kernel_gate,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate)
if self.use_bias:
transform = K.bias_add(
transform,
self.bias_gate,
data_format=self.data_format)
transform_gate = K.sigmoid(transform_gate)
carry_gate = 1.0 - transform_gate
return transform * transform_gate + inputs * carry_gate
示例6: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv3d [as 別名]
def call(self, inputs):
if self.rank == 1:
expert_outputs = K.conv1d(
inputs,
self.expert_kernel,
strides=self.strides[0],
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate[0])
if self.rank == 2:
expert_outputs = K.conv2d(
inputs,
self.expert_kernel,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate)
if self.rank == 3:
expert_outputs = K.conv3d(
inputs,
self.expert_kernel,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate)
expert_outputs = K.reshape(expert_outputs, (-1,) + self.o_shape[1:-1] + (self.n_filters, self.n_experts_per_filter))
if self.use_expert_bias:
expert_outputs = K.bias_add(
expert_outputs,
self.expert_bias,
data_format=self.data_format)
if self.expert_activation is not None:
expert_outputs = self.expert_activation(expert_outputs)
gating_outputs = tf.tensordot(inputs, self.gating_kernel, axes=self.rank+1) # samples x n_filters x n_experts_per_filter
if self.use_gating_bias:
gating_outputs = K.bias_add(
gating_outputs,
self.gating_bias,
data_format=self.data_format)
if self.gating_activation is not None:
gating_outputs = self.gating_activation(gating_outputs)
gating_outputs = K.reshape(gating_outputs, self.new_gating_outputs_shape)
outputs = K.sum(expert_outputs * gating_outputs, axis=-1, keepdims=False)
return outputs