當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.conv2d_transpose方法代碼示例

本文整理匯總了Python中keras.backend.conv2d_transpose方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.conv2d_transpose方法的具體用法?Python backend.conv2d_transpose怎麽用?Python backend.conv2d_transpose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.conv2d_transpose方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d_transpose [as 別名]
def call(self, x):
        shape = self.compute_output_shape(x.shape.as_list())
        batch_size = K.shape(x)[0]
        output_shape = (batch_size, *shape)
      
        return K.conv2d_transpose(x, self._W, output_shape=output_shape, strides=tuple(self._upscaling_factors), padding="same") 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:8,代碼來源:image.py

示例2: gconv2d

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d_transpose [as 別名]
def gconv2d(x, kernel, gconv_indices, gconv_shape_info, strides=(1, 1), padding='valid',
            data_format=None, dilation_rate=(1, 1), transpose=False, output_shape=None):
    """2D group equivariant convolution.

    # Arguments
        x: Tensor or variable.
        kernel: kernel tensor.
        strides: strides tuple.
        padding: string, `"same"` or `"valid"`.
        data_format: string, `"channels_last"` or `"channels_first"`.
            Whether to use Theano or TensorFlow data format
            for inputs/kernels/ouputs.
        dilation_rate: tuple of 2 integers.

    # Returns
        A tensor, result of 2D convolution.

    # Raises
        ValueError: if `data_format` is neither `channels_last` or `channels_first`.
    """
    # Transform the filters
    transformed_filter = transform_filter_2d_nhwc(w=kernel, flat_indices=gconv_indices, shape_info=gconv_shape_info)
    if transpose:
        output_shape = (K.shape(x)[0], output_shape[1], output_shape[2], output_shape[3])
        transformed_filter = transform_filter_2d_nhwc(w=kernel, flat_indices=gconv_indices, shape_info=gconv_shape_info)
        transformed_filter = K.permute_dimensions(transformed_filter, [0, 1, 3, 2])
        return K.conv2d_transpose(x=x, kernel=transformed_filter, output_shape=output_shape, strides=strides,
                                padding=padding, data_format=data_format)
    return K.conv2d(x=x, kernel=transformed_filter, strides=strides, padding=padding, data_format=data_format,
                    dilation_rate=dilation_rate) 
開發者ID:basveeling,項目名稱:keras-gcnn,代碼行數:32,代碼來源:convolutional.py

示例3: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d_transpose [as 別名]
def call(self, inputs):
        input_shape = K.shape(inputs)
        batch_size = input_shape[0]
        if self.data_format == 'channels_first':
            h_axis, w_axis = 2, 3
        else:
            h_axis, w_axis = 1, 2

        height, width = input_shape[h_axis], input_shape[w_axis]
        kernel_h, kernel_w = self.kernel_size
        stride_h, stride_w = self.strides

        # Infer the dynamic output shape:
        if self._output_shape is None:
            out_height = deconv_length(height, stride_h, kernel_h, self.padding)
            out_width = deconv_length(width, stride_w, kernel_w, self.padding)
            if self.data_format == 'channels_first':
                output_shape = (
                    batch_size, self.filters, out_height, out_width
                )
            else:
                output_shape = (
                    batch_size, out_height, out_width, self.filters
                )
        else:
            output_shape = (batch_size,) + self._output_shape

        outputs = K.conv2d_transpose(
            inputs,
            self.kernel,
            output_shape,
            self.strides,
            padding=self.padding,
            data_format=self.data_format
        )

        if self.bias:
            outputs = K.bias_add(
                outputs, self.bias, data_format=self.data_format
            )

        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:davidtvs,項目名稱:Keras-LinkNet,代碼行數:46,代碼來源:conv2d_transpose.py

示例4: expand_layer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d_transpose [as 別名]
def expand_layer(a=0.4, padding_mode='same'):
    kernel_1d = [0.25 - a/2, 0.25, a, 0.25, 0.25 - a/2]

    kernel_3d = np.zeros((5, 1, 3, 3), 'float32')
    kernel_3d[:, 0, 0, 0] = kernel_1d
    kernel_3d[:, 0, 1, 1] = kernel_1d
    kernel_3d[:, 0, 2, 2] = kernel_1d



    def fn(x):
        #conv_even = K.conv2d(K.conv2d(x, even_kernel_3d),
                    #K.permute_dimensions(even_kernel_3d, (1, 0, 2, 3)))
        #conv_odd = K.conv2d(K.conv2d(x, odd_kernel_3d),
                    #K.permute_dimensions(odd_kernel_3d, (1, 0, 2, 3)))
        input_shape = K.shape(x)
        
        dim1 = conv_utils.conv_input_length(
                input_shape[1],
                5,
                padding=padding_mode,
                stride=2)
        dim2 = conv_utils.conv_input_length(
                input_shape[2],
                5,
                padding=padding_mode,
                stride=2)
        
        output_shape_a = (input_shape[0], dim1, input_shape[2], input_shape[3])
        output_shape_b = (input_shape[0], dim1, dim2, input_shape[3])

        upconvolved = K.conv2d_transpose(x,
                                         kernel_3d,
                                         output_shape_a,
                                        strides = (2,1),
                                        padding=padding_mode)
        upconvolved = K.conv2d_transpose(upconvolved,
                                         K.permute_dimensions(kernel_3d, (1, 0, 2, 3)),
                                         output_shape_b,
                                        strides = (1,2),
                                        padding=padding_mode)

        return 4 * upconvolved

    
    return Lambda(fn) 
開發者ID:wxs,項目名稱:subjective-functions,代碼行數:48,代碼來源:gram.py

示例5: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d_transpose [as 別名]
def call(self, input_tensor, training=None):
        input_transposed = tf.transpose(input_tensor, [3, 0, 1, 2, 4])
        input_shape = K.shape(input_transposed)
        input_tensor_reshaped = K.reshape(input_transposed, [
            input_shape[1] * input_shape[0], self.input_height, self.input_width, self.input_num_atoms])
        input_tensor_reshaped.set_shape((None, self.input_height, self.input_width, self.input_num_atoms))


        if self.upsamp_type == 'resize':
            upsamp = K.resize_images(input_tensor_reshaped, self.scaling, self.scaling, 'channels_last')
            outputs = K.conv2d(upsamp, kernel=self.W, strides=(1, 1), padding=self.padding, data_format='channels_last')
        elif self.upsamp_type == 'subpix':
            conv = K.conv2d(input_tensor_reshaped, kernel=self.W, strides=(1, 1), padding='same',
                            data_format='channels_last')
            outputs = tf.depth_to_space(conv, self.scaling)
        else:
            batch_size = input_shape[1] * input_shape[0]

            # Infer the dynamic output shape:
            out_height = deconv_length(self.input_height, self.scaling, self.kernel_size, self.padding)
            out_width = deconv_length(self.input_width, self.scaling, self.kernel_size, self.padding)
            output_shape = (batch_size, out_height, out_width, self.num_capsule * self.num_atoms)

            outputs = K.conv2d_transpose(input_tensor_reshaped, self.W, output_shape, (self.scaling, self.scaling),
                                     padding=self.padding, data_format='channels_last')

        votes_shape = K.shape(outputs)
        _, conv_height, conv_width, _ = outputs.get_shape()

        votes = K.reshape(outputs, [input_shape[1], input_shape[0], votes_shape[1], votes_shape[2],
                                 self.num_capsule, self.num_atoms])
        votes.set_shape((None, self.input_num_capsule, conv_height.value, conv_width.value,
                         self.num_capsule, self.num_atoms))

        logit_shape = K.stack([
            input_shape[1], input_shape[0], votes_shape[1], votes_shape[2], self.num_capsule])
        biases_replicated = K.tile(self.b, [votes_shape[1], votes_shape[2], 1, 1])

        activations = update_routing(
            votes=votes,
            biases=biases_replicated,
            logit_shape=logit_shape,
            num_dims=6,
            input_dim=self.input_num_capsule,
            output_dim=self.num_capsule,
            num_routing=self.routings)

        return activations 
開發者ID:lalonderodney,項目名稱:SegCaps,代碼行數:50,代碼來源:capsule_layers.py


注:本文中的keras.backend.conv2d_transpose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。