當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.conv2d方法代碼示例

本文整理匯總了Python中keras.backend.conv2d方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.conv2d方法的具體用法?Python backend.conv2d怎麽用?Python backend.conv2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.conv2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: preprocess_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def preprocess_input(self, inputs, training=None):
        if self.window_size > 1:
            inputs = K.temporal_padding(inputs, (self.window_size - 1, 0))
        inputs = K.expand_dims(inputs, 2)  # add a dummy dimension

        output = K.conv2d(inputs, self.kernel, strides=self.strides,
                          padding='valid',
                          data_format='channels_last')
        output = K.squeeze(output, 2)  # remove the dummy dimension
        if self.use_bias:
            output = K.bias_add(output, self.bias, data_format='channels_last')

        if self.dropout is not None and 0. < self.dropout < 1.:
            z = output[:, :, :self.units]
            f = output[:, :, self.units:2 * self.units]
            o = output[:, :, 2 * self.units:]
            f = K.in_train_phase(1 - _dropout(1 - f, self.dropout), f, training=training)
            return K.concatenate([z, f, o], -1)
        else:
            return output 
開發者ID:amansrivastava17,項目名稱:embedding-as-service,代碼行數:22,代碼來源:qrnn.py

示例2: _preprocess_conv2d_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def _preprocess_conv2d_input(x, data_format):
    """Transpose and cast the input before the conv2d.

    # Arguments
        x: input tensor.
        data_format: string, `"channels_last"` or `"channels_first"`.

    # Returns
        A tensor.
    """
    if K.dtype(x) == 'float64':
        x = tf.cast(x, 'float32')
    if data_format == 'channels_first':
        # TF uses the last dimension as channel dimension,
        # instead of the 2nd one.
        # TH input shape: (samples, input_depth, rows, cols)
        # TF input shape: (samples, rows, cols, input_depth)
        x = tf.transpose(x, (0, 2, 3, 1))
    return x 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:21,代碼來源:tensorflow_backend.py

示例3: _postprocess_conv2d_output

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def _postprocess_conv2d_output(x, data_format):
    """Transpose and cast the output from conv2d if needed.

    # Arguments
        x: A tensor.
        data_format: string, `"channels_last"` or `"channels_first"`.

    # Returns
        A tensor.
    """

    if data_format == 'channels_first':
        x = tf.transpose(x, (0, 3, 1, 2))

    if K.floatx() == 'float64':
        x = tf.cast(x, 'float64')
    return x 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:19,代碼來源:tensorflow_backend.py

示例4: conv2d

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def conv2d(x, kernel, strides=(1, 1), padding='valid', data_format='channels_first',
           image_shape=None, filter_shape=None):
    """2D convolution.

    # Arguments
        x: Input tensor
        kernel: kernel tensor.
        strides: strides tuple.
        padding: string, "same" or "valid".
        data_format: 'channels_first' or 'channels_last'.
            Whether to use Theano or TensorFlow dimension
            ordering in inputs/kernels/ouputs.
        image_shape: Optional, the input tensor shape
        filter_shape: Optional, the kernel shape.

    # Returns
        x convolved with the kernel.

    # Raises
        Exception: In case of invalid border mode or data format.
    """
    return K.conv2d(x, kernel, strides, padding, data_format) 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:24,代碼來源:tensorflow_backend.py

示例5: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def call(self, inputs):
        binary_kernel = binarize(self.kernel, H=self.H) 
        outputs = K.conv2d(
            inputs,
            binary_kernel,
            strides=self.strides,
            padding=self.padding,
            data_format=self.data_format,
            dilation_rate=self.dilation_rate)

        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:21,代碼來源:binary_layers.py

示例6: preprocess_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def preprocess_input(self, inputs, training=None):
        if self.window_size > 1:
            inputs = K.temporal_padding(inputs, (self.window_size-1, 0))
        inputs = K.expand_dims(inputs, 2)  # add a dummy dimension

        output = K.conv2d(inputs, self.kernel, strides=self.strides,
                          padding='valid',
                          data_format='channels_last')
        output = K.squeeze(output, 2)  # remove the dummy dimension
        if self.use_bias:
            output = K.bias_add(output, self.bias, data_format='channels_last')

        if self.dropout is not None and 0. < self.dropout < 1.:
            z = output[:, :, :self.units]
            f = output[:, :, self.units:2 * self.units]
            o = output[:, :, 2 * self.units:]
            f = K.in_train_phase(1 - _dropout(1 - f, self.dropout), f, training=training)
            return K.concatenate([z, f, o], -1)
        else:
            return output 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:22,代碼來源:qrnn.py

示例7: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def call(self, inputs):
        ternary_kernel = ternarize(self.kernel, H=self.H) 
        outputs = K.conv2d(
            inputs,
            ternary_kernel,
            strides=self.strides,
            padding=self.padding,
            data_format=self.data_format,
            dilation_rate=self.dilation_rate)

        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:21,代碼來源:ternary_layers.py

示例8: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def call(self, inputs):
        if self.r_num == 1:
            # if there is no routing (and this is so when r_num is 1 and all c are equal)
            # then this is a common convolution
            outputs = K.conv2d(K.reshape(inputs, (-1, self.h_i, self.w_i,
                                                  self.ch_i * self.n_i)),
                               K.reshape(self.w, self.kernel_size +
                                         (self.ch_i * self.n_i, self.ch_j * self.n_j)),
                               data_format='channels_last',
                               strides=self.strides,
                               padding=self.padding,
                               dilation_rate=self.dilation_rate)

            outputs = squeeze(K.reshape(outputs, ((-1, self.h_j, self.w_j,
                                                   self.ch_j, self.n_j))))

        return outputs 
開發者ID:brjathu,項目名稱:deepcaps,代碼行數:19,代碼來源:capslayers.py

示例9: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def call(self, inputs):
        if self.rank == 2:
            outputs = K.conv2d(
                inputs,
                self.kernel*self.mask, ### add mask multiplication
                strides=self.strides,
                padding=self.padding,
                data_format=self.data_format,
                dilation_rate=self.dilation_rate)
        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:csm9493,項目名稱:FC-AIDE-Keras,代碼行數:20,代碼來源:layers.py

示例10: inst_weight

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def inst_weight(output_y, output_x, output_dr, output_dl, config=None):
    dy = output_y[:,2:,2:]-output_y[:, :-2,2:] + \
         2*(output_y[:,2:,1:-1]- output_y[:,:-2,1:-1]) + \
         output_y[:,2:,:-2]-output_y[:,:-2,:-2]
    dx = output_x[:,2:,2:]- output_x[:,2:,:-2] + \
         2*( output_x[:,1:-1,2:]- output_x[:,1:-1,:-2]) +\
         output_x[:,:-2,2:]- output_x[:,:-2,:-2]
    ddr=  (output_dr[:,2:,2:]-output_dr[:,:-2,:-2] +\
           output_dr[:,1:-1,2:]-output_dr[:,:-2,1:-1]+\
           output_dr[:,2:,1:-1]-output_dr[:,1:-1,:-2])*K.constant(2)
    ddl=  (output_dl[:,2:,:-2]-output_dl[:,:-2,2:] +\
           output_dl[:,2:,1:-1]-output_dl[:,1:-1,2:]+\
           output_dl[:,1:-1,:-2]-output_dl[:,:-2,1:-1])*K.constant(2)
    dpred = K.concatenate([dy,dx,ddr,ddl],axis=-1)
    dpred = K.spatial_2d_padding(dpred)
    weight_fg = K.cast(K.all(dpred>K.constant(config.GRADIENT_THRES), axis=3, 
                          keepdims=True), K.floatx())
    
    weight = K.clip(K.sqrt(weight_fg*K.prod(dpred, axis=3, keepdims=True)), 
                    config.WEIGHT_AREA/config.CLIP_AREA_HIGH, 
                    config.WEIGHT_AREA/config.CLIP_AREA_LOW)
    weight +=(1-weight_fg)*config.WEIGHT_AREA/config.BG_AREA
    weight = K.conv2d(weight, K.constant(config.GAUSSIAN_KERNEL),
                      padding='same')
    return K.stop_gradient(weight) 
開發者ID:jacobkie,項目名稱:2018DSB,代碼行數:27,代碼來源:model.py

示例11: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def call(self, inputs, **kwargs):
        outputs = K.conv2d(
            inputs,
            self.kernel,
            strides=self.strides,
            padding=self.padding,
            data_format=self.data_format,
            dilation_rate=self.dilation_rate)
        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)
        outputs = BatchNormalization(momentum=self.momentum)(outputs)
        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:PavlosMelissinos,項目名稱:enet-keras,代碼行數:19,代碼來源:core.py

示例12: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def call(self, inputs):
        input_shape = K.shape(inputs)
        if self.data_format == 'channels_first':
            channel_axis = 1
        else:
            channel_axis = -1
        if input_shape[channel_axis] is None:
            raise ValueError('The channel dimension of the inputs '
                             'should be defined. Found `None`.')
        input_dim = input_shape[channel_axis]
        ker_shape = self.kernel_size + (input_dim, self.filters)
        nb_kernels = ker_shape[-2] * ker_shape[-1]
        kernel_shape_4_norm = (np.prod(self.kernel_size), nb_kernels)
        reshaped_kernel = K.reshape(self.kernel, kernel_shape_4_norm)
        normalized_weight = K.l2_normalize(reshaped_kernel, axis=0, epsilon=self.epsilon)
        normalized_weight = K.reshape(self.gamma, (1, ker_shape[-2] * ker_shape[-1])) * normalized_weight
        shaped_kernel = K.reshape(normalized_weight, ker_shape)
        shaped_kernel._keras_shape = ker_shape
        
        convArgs = {"strides":       self.strides[0]       if self.rank == 1 else self.strides,
                    "padding":       self.padding,
                    "data_format":   self.data_format,
                    "dilation_rate": self.dilation_rate[0] if self.rank == 1 else self.dilation_rate}
        convFunc = {1: K.conv1d,
                    2: K.conv2d,
                    3: K.conv3d}[self.rank]
        output = convFunc(inputs, shaped_kernel, **convArgs)

        if self.use_bias:
            output = K.bias_add(
                output,
                self.bias,
                data_format=self.data_format
            )

        if self.activation is not None:
            output = self.activation(output)

        return output 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:41,代碼來源:conv.py

示例13: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def call(self, x):
        def hw_flatten(x):
            return K.reshape(x, shape=[K.shape(x)[0], K.shape(x)[1]*K.shape(x)[2], K.shape(x)[-1]])

        f = K.conv2d(x,
                     kernel=self.kernel_f,
                     strides=(1, 1), padding='same')  # [bs, h, w, c']
        f = K.bias_add(f, self.bias_f)
        g = K.conv2d(x,
                     kernel=self.kernel_g,
                     strides=(1, 1), padding='same')  # [bs, h, w, c']
        g = K.bias_add(g, self.bias_g)
        h = K.conv2d(x,
                     kernel=self.kernel_h,
                     strides=(1, 1), padding='same')  # [bs, h, w, c]
        h = K.bias_add(h, self.bias_h)

        s = tf.matmul(hw_flatten(g), hw_flatten(f), transpose_b=True)  # # [bs, N, N]

        beta = K.softmax(s, axis=-1)  # attention map

        o = K.batch_dot(beta, hw_flatten(h))  # [bs, N, C]

        o = K.reshape(o, shape=K.shape(x))  # [bs, h, w, C]
        x = self.gamma * o + x

        return x 
開發者ID:emilwallner,項目名稱:Coloring-greyscale-images,代碼行數:29,代碼來源:attention.py

示例14: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def call(self, inputs, training=None):
        def _l2normalize(v, eps=1e-12):
            return v / (K.sum(v ** 2) ** 0.5 + eps)
        def power_iteration(W, u):
            #Accroding the paper, we only need to do power iteration one time.
            _u = u
            _v = _l2normalize(K.dot(_u, K.transpose(W)))
            _u = _l2normalize(K.dot(_v, W))
            return _u, _v
        #Spectral Normalization
        W_shape = self.kernel.shape.as_list()
        #Flatten the Tensor
        W_reshaped = K.reshape(self.kernel, [-1, W_shape[-1]])
        _u, _v = power_iteration(W_reshaped, self.u)
        #Calculate Sigma
        sigma=K.dot(_v, W_reshaped)
        sigma=K.dot(sigma, K.transpose(_u))
        #normalize it
        W_bar = W_reshaped / sigma
        #reshape weight tensor
        if training in {0, False}:
            W_bar = K.reshape(W_bar, W_shape)
        else:
            with tf.control_dependencies([self.u.assign(_u)]):
                W_bar = K.reshape(W_bar, W_shape)
                
        outputs = K.conv2d(
                inputs,
                W_bar,
                strides=self.strides,
                padding=self.padding,
                data_format=self.data_format,
                dilation_rate=self.dilation_rate)
        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)
        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:emilwallner,項目名稱:Coloring-greyscale-images,代碼行數:43,代碼來源:sn.py

示例15: gconv2d

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import conv2d [as 別名]
def gconv2d(x, kernel, gconv_indices, gconv_shape_info, strides=(1, 1), padding='valid',
            data_format=None, dilation_rate=(1, 1), transpose=False, output_shape=None):
    """2D group equivariant convolution.

    # Arguments
        x: Tensor or variable.
        kernel: kernel tensor.
        strides: strides tuple.
        padding: string, `"same"` or `"valid"`.
        data_format: string, `"channels_last"` or `"channels_first"`.
            Whether to use Theano or TensorFlow data format
            for inputs/kernels/ouputs.
        dilation_rate: tuple of 2 integers.

    # Returns
        A tensor, result of 2D convolution.

    # Raises
        ValueError: if `data_format` is neither `channels_last` or `channels_first`.
    """
    # Transform the filters
    transformed_filter = transform_filter_2d_nhwc(w=kernel, flat_indices=gconv_indices, shape_info=gconv_shape_info)
    if transpose:
        output_shape = (K.shape(x)[0], output_shape[1], output_shape[2], output_shape[3])
        transformed_filter = transform_filter_2d_nhwc(w=kernel, flat_indices=gconv_indices, shape_info=gconv_shape_info)
        transformed_filter = K.permute_dimensions(transformed_filter, [0, 1, 3, 2])
        return K.conv2d_transpose(x=x, kernel=transformed_filter, output_shape=output_shape, strides=strides,
                                padding=padding, data_format=data_format)
    return K.conv2d(x=x, kernel=transformed_filter, strides=strides, padding=padding, data_format=data_format,
                    dilation_rate=dilation_rate) 
開發者ID:basveeling,項目名稱:keras-gcnn,代碼行數:32,代碼來源:convolutional.py


注:本文中的keras.backend.conv2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。