當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.concatenate方法代碼示例

本文整理匯總了Python中keras.backend.concatenate方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.concatenate方法的具體用法?Python backend.concatenate怎麽用?Python backend.concatenate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.concatenate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: step

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def step(self, x, states):   
        h = states[0]
        # states[1] necessary?

        # equals K.dot(X, self._W1) + self._b2 with X.shape=[bs, T, input_dim]
        total_x_prod = states[-1]
        # comes from the constants (equals the input sequence)
        X = states[-2]
        
        # expand dims to add the vector which is only valid for this time step
        # to total_x_prod which is valid for all time steps
        hw = K.expand_dims(K.dot(h, self._W2), 1)
        additive_atn = total_x_prod + hw
        attention = K.softmax(K.dot(additive_atn, self._V), axis=1)
        x_weighted = K.sum(attention * X, [1])

        x = K.dot(K.concatenate([x, x_weighted], 1), self._W3) + self._b3
        
        h, new_states = self.layer.cell.call(x, states[:-2])
        
        return h, new_states 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:23,代碼來源:attention.py

示例2: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def call(self,x,training=None):
        deta1 = 0.3
        deta2 = 0.3
        deta3 = 0.3
        seed = np.random.randint(1, 10e6)
        rng = RandomStreams(seed=seed)
        theta1 = rng.uniform(size=(x.shape[0],1),low=-deta1,high=deta1,dtype='float32')
        theta2 = rng.uniform(size=(x.shape[0],1),low=-deta2,high=deta2,dtype='float32')
        theta3 = rng.uniform(size=(x.shape[0],1),low=-deta3,high=deta3,dtype='float32')
        theta = K.concatenate([theta1,theta2,theta3],axis=-1)
        theta = K.tile(theta,x.shape[1])
        theta = theta.reshape((x.shape[0], x.shape[1], 3))

        theta = theta.reshape((theta.shape[0]*theta.shape[1], theta.shape[2]))
        M = _fusion(theta)
        output = _transform_rot(M, x)

        return K.in_train_phase(output,x,training = training) 
開發者ID:microsoft,項目名稱:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代碼行數:20,代碼來源:transform_rnn.py

示例3: yolo_correct_boxes

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
    '''Get corrected boxes'''
    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape/image_shape))
    offset = (input_shape-new_shape)/2./input_shape
    scale = input_shape/new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes =  K.concatenate([
        box_mins[..., 0:1],  # y_min
        box_mins[..., 1:2],  # x_min
        box_maxes[..., 0:1],  # y_max
        box_maxes[..., 1:2]  # x_max
    ])

    # Scale boxes back to original image shape.
    boxes *= K.concatenate([image_shape, image_shape])
    return boxes 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:26,代碼來源:model.py

示例4: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def call(self , x, mask=None):
        
        e1=x[0].T
        e2=x[1].T
        
        batch_size = K.shape(x[0])[0]
        sim = []
        V_out = K.dot(self.V, K.concatenate([e1,e2],axis=0))     

        for i in range(self.k): 
            temp = K.batch_dot(K.dot(e1.T,self.W[i,:,:]),e2.T,axes=1)
            sim.append(temp)
        sim=K.reshape(sim,(self.k,batch_size))

        tensor_bi_product = self.activation(V_out+sim)
        tensor_bi_product = K.dot(self.U.T, tensor_bi_product).T

        return tensor_bi_product 
開發者ID:GauravBh1010tt,項目名稱:DeepLearn,代碼行數:20,代碼來源:layers.py

示例5: yolo_body

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def yolo_body(inputs, num_anchors, num_classes):
    """Create YOLO_V2 model CNN body in Keras."""
    darknet = Model(inputs, darknet_body()(inputs))
    conv20 = compose(
        DarknetConv2D_BN_Leaky(1024, (3, 3)),
        DarknetConv2D_BN_Leaky(1024, (3, 3)))(darknet.output)

    conv13 = darknet.layers[43].output
    conv21 = DarknetConv2D_BN_Leaky(64, (1, 1))(conv13)
    # TODO: Allow Keras Lambda to use func arguments for output_shape?
    conv21_reshaped = Lambda(
        space_to_depth_x2,
        output_shape=space_to_depth_x2_output_shape,
        name='space_to_depth')(conv21)

    x = concatenate([conv21_reshaped, conv20])
    x = DarknetConv2D_BN_Leaky(1024, (3, 3))(x)
    x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x)
    return Model(inputs, x) 
開發者ID:kaka-lin,項目名稱:object-detection,代碼行數:21,代碼來源:keras_yolo.py

示例6: _multi_kmax_context_concat

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def _multi_kmax_context_concat(inputs, top_k, poses):
	x, context_input = inputs
	idxes, topk_vs = list(), list()
	for p in poses:
		val, idx = tf.nn.top_k(tf.slice(x, [0,0,0], [-1,-1, p]), k=top_k, sorted=True, name=None)
		topk_vs.append(val)
		idxes.append(idx)
	concat_topk_max = tf.concat(topk_vs, -1, name='concat_val')
	concat_topk_idx = tf.concat(idxes, -1, name='concat_idx')
	# hack that requires the context to have the same shape as similarity matrices
	# https://stackoverflow.com/questions/41897212/how-to-sort-a-multi-dimensional-tensor-using-the-returned-indices-of-tf-nn-top-k
	shape = tf.shape(x)
	mg = tf.meshgrid(*[tf.range(d) for d in (tf.unstack(shape[:(x.get_shape().ndims - 1)]) + [top_k*len(poses)])], indexing='ij')
	val_contexts = tf.gather_nd(context_input, tf.stack(mg[:-1] + [concat_topk_idx], axis=-1))
	return tf.concat([concat_topk_max, val_contexts], axis=-1)
	# return backend.concatenate([concat_topk_max, val_contexts]) 
開發者ID:yyht,項目名稱:BERT,代碼行數:18,代碼來源:drmm_utils.py

示例7: preprocess

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def preprocess(x):
    return K.concatenate([
        x[:,:,0:1] / 360.0,
        x[:,:,1:3],
        x[:,:,3:4] / 360.0, 
        x[:,:,4:6],
        x[:,:,6:18] / 360.0,
        x[:,:,18:19] - x[:,:,1:2],
        x[:,:,19:22],
        x[:,:,28:29] - x[:,:,1:2],
        x[:,:,29:30],
        x[:, :, 30:31] - x[:, :, 1:2],
        x[:, :, 31:32],
        x[:, :, 32:33] - x[:, :, 1:2],
        x[:, :, 33:34],
        x[:, :, 34:35] - x[:, :, 1:2],
        x[:, :, 35:41],
    ], axis=2) 
開發者ID:AdamStelmaszczyk,項目名稱:learning2run,代碼行數:20,代碼來源:example.py

示例8: add_boundary_energy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def add_boundary_energy(x, b_start=None, b_end=None, mask=None):
    '''Given the observations x, it adds the start boundary energy b_start (resp.
    end boundary energy b_end on the start (resp. end) elements and multiplies
    the mask.'''
    if mask is None:
        if b_start is not None:
            x = K.concatenate([x[:, :1, :] + b_start, x[:, 1:, :]], axis=1)
        if b_end is not None:
            x = K.concatenate([x[:, :-1, :], x[:, -1:, :] + b_end], axis=1)
    else:
        mask = K.cast(mask, K.floatx())
        mask = K.expand_dims(mask, 2)
        x *= mask
        if b_start is not None:
            mask_r = K.concatenate([K.zeros_like(mask[:, :1]), mask[:, :-1]], axis=1)
            start_mask = K.cast(K.greater(mask, mask_r), K.floatx())
            x = x + start_mask * b_start
        if b_end is not None:
            mask_l = K.concatenate([mask[:, 1:], K.zeros_like(mask[:, -1:])], axis=1)
            end_mask = K.cast(K.greater(mask, mask_l), K.floatx())
            x = x + end_mask * b_end
    return x 
開發者ID:UKPLab,項目名稱:elmo-bilstm-cnn-crf,代碼行數:24,代碼來源:ChainCRF.py

示例9: _forward

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def _forward(x, reduce_step, initial_states, U, mask=None):
    '''Forward recurrence of the linear chain crf.'''

    def _forward_step(energy_matrix_t, states):
        alpha_tm1 = states[-1]
        new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t)
        return new_states[0], new_states

    U_shared = K.expand_dims(K.expand_dims(U, 0), 0)

    if mask is not None:
        mask = K.cast(mask, K.floatx())
        mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3)
        U_shared = U_shared * mask_U

    inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared
    inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])], axis=1)

    last, values, _ = K.rnn(_forward_step, inputs, initial_states)
    return last, values 
開發者ID:UKPLab,項目名稱:elmo-bilstm-cnn-crf,代碼行數:22,代碼來源:ChainCRF.py

示例10: _pad

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def _pad(self, input):
        """
        pads the network output so y_pred and y_true have the same dimensions
        :param input: previous layer
        :return: layer, last dimensions padded for 4
        """

        #pad = K.placeholder( (None,self.config.ANCHORS, 4))


        #pad = np.zeros ((self.config.BATCH_SIZE,self.config.ANCHORS, 4))
        #return K.concatenate( [input, pad], axis=-1)


        padding = np.zeros((3,2))
        padding[2,1] = 4
        return tf.pad(input, padding ,"CONSTANT")



    #loss function to optimize 
開發者ID:omni-us,項目名稱:squeezedet-keras,代碼行數:23,代碼來源:squeezeDet.py

示例11: _correct_boxes

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def _correct_boxes(
            self, box_xy, box_wh, input_shape, image_shape):
        """Get corrected boxes, which are scaled to original shape."""
        box_yx = box_xy[..., ::-1]
        box_hw = box_wh[..., ::-1]
        input_shape = K.cast(input_shape, K.dtype(box_yx))
        image_shape = K.cast(image_shape, K.dtype(box_yx))
        new_shape = K.round(image_shape * K.min(input_shape / image_shape))
        offset = (input_shape - new_shape) / 2. / input_shape
        scale = input_shape / new_shape
        box_yx = (box_yx - offset) * scale
        box_hw *= scale

        box_mins = box_yx - (box_hw / 2.)
        box_maxes = box_yx + (box_hw / 2.)
        boxes = K.concatenate([
            box_mins[..., 0:1],  # y_min
            box_mins[..., 1:2],  # x_min
            box_maxes[..., 0:1],  # y_max
            box_maxes[..., 1:2]  # x_max
        ])

        # Scale boxes back to original image shape.
        boxes *= K.concatenate([image_shape, image_shape])
        return boxes 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:27,代碼來源:keras_yolov3.py

示例12: yolo_correct_boxes

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):

    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape/image_shape))
    offset = (input_shape-new_shape)/2./input_shape
    scale = input_shape/new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes =  K.concatenate([
        box_mins[..., 0:1],
        box_mins[..., 1:2],
        box_maxes[..., 0:1],
        box_maxes[..., 1:2]
    ])


    boxes *= K.concatenate([image_shape, image_shape])
    return boxes 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:26,代碼來源:utils.py

示例13: preprocess_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def preprocess_input(self, x):
        if self.consume_less == 'cpu':
            if 0 < self.dropout_W < 1:
                dropout = self.dropout_W
            else:
                dropout = 0
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[2]
            timesteps = input_shape[1]

            x_i = time_distributed_dense(x, self.W_i, self.b_i, dropout,
                                         input_dim, self.output_dim, timesteps)
            x_f = time_distributed_dense(x, self.W_f, self.b_f, dropout,
                                         input_dim, self.output_dim, timesteps)
            x_c = time_distributed_dense(x, self.W_c, self.b_c, dropout,
                                         input_dim, self.output_dim, timesteps)
            x_o = time_distributed_dense(x, self.W_o, self.b_o, dropout,
                                         input_dim, self.output_dim, timesteps)
            return K.concatenate([x_i, x_f, x_c, x_o], axis=2)
        else:
            return x 
開發者ID:SigmaQuan,項目名稱:NTM-Keras,代碼行數:23,代碼來源:lstm2ntm.py

示例14: preprocess_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def preprocess_input(self, x):
    if self.consume_less == 'cpu':
      input_shape = self.input_spec[0].shape
      input_dim = input_shape[2]
      timesteps = input_shape[1]

      x_t = time_distributed_dense(x, self.W_t, self.b_t, self.dropout_W,
                                   input_dim, self.output_dim, timesteps)
      x_h = time_distributed_dense(x, self.W_h, self.b_h, self.dropout_W,
                                   input_dim, self.output_dim, timesteps)
      return K.concatenate([x_t, x_h], axis=2)
    else:
      return x 
開發者ID:LaurentMazare,項目名稱:deep-models,代碼行數:15,代碼來源:rhn.py

示例15: _additive_similarity

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import concatenate [as 別名]
def _additive_similarity(self, source, query):
        concatenation = K.concatenate([source, query], axis=2)
        nonlinearity = K.tanh(K.dot(concatenation, self._weights["w_a"]))
        
        # tile the weight vector (1, 1, dim) for each time step and each element of the batch -> (bs, T, dim)
        source_shape = K.shape(source)
        vaeff = K.tile(K.expand_dims(self._weights["v_a"], 0), [source_shape[0], source_shape[1], 1])

        similarity = K.batch_dot(K.permute_dimensions(vaeff, [0, 2, 1]), nonlinearity, axes=[1, 2])
        
        return similarity 
開發者ID:zimmerrol,項目名稱:keras-utility-layer-collection,代碼行數:13,代碼來源:attention.py


注:本文中的keras.backend.concatenate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。