當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.clip方法代碼示例

本文整理匯總了Python中keras.backend.clip方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.clip方法的具體用法?Python backend.clip怎麽用?Python backend.clip使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.clip方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: symbolic_fgs

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def symbolic_fgs(x, grad, eps=0.3, clipping=True):
    """
    FGSM attack.
    """

    # signed gradient
    normed_grad = K.sign(grad)

    # Multiply by constant epsilon
    scaled_grad = eps * normed_grad

    # Add perturbation to original example to obtain adversarial example
    adv_x = K.stop_gradient(x + scaled_grad)

    if clipping:
        adv_x = K.clip(adv_x, 0, 1)
    return adv_x 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:19,代碼來源:fgs.py

示例2: symbolic_fg

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def symbolic_fg(x, grad, eps=0.3, clipping=True):
    """
    FG attack
    """
    # Unit vector in direction of gradient
    reduc_ind = list(xrange(1, len(x.get_shape())))
    normed_grad = grad / tf.sqrt(tf.reduce_sum(tf.square(grad),
                                                   reduction_indices=reduc_ind,
                                                   keep_dims=True))
    # Multiply by constant epsilon
    scaled_grad = eps * normed_grad

    # Add perturbation to original example to obtain adversarial example
    adv_x = K.stop_gradient(x + scaled_grad)

    if clipping:
        adv_x = K.clip(adv_x, 0, 1)

    return adv_x 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:21,代碼來源:fgs.py

示例3: iter_fgs

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def iter_fgs(model, x, y, steps, alpha, eps, clipping=True):
    """
    I-FGSM attack.
    """

    adv_x = x
    # iteratively apply the FGSM with small step size
    for i in range(steps):
        logits = model(adv_x)
        grad = gen_grad(adv_x, logits, y)

        adv_x = symbolic_fgs(adv_x, grad, alpha, True)
        r = adv_x - x
        r = K.clip(r, -eps, eps)
        adv_x = x+r

    if clipping:
        adv_x = K.clip(adv_x, 0, 1)


    return adv_x 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:23,代碼來源:fgs.py

示例4: optimizer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def optimizer(self):
        a = K.placeholder(shape=(None,), dtype='int32')
        y = K.placeholder(shape=(None,), dtype='float32')

        prediction = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(prediction * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # 상태가 입력, 큐함수가 출력인 인공신경망 생성 
開發者ID:rlcode,項目名稱:reinforcement-learning-kr,代碼行數:23,代碼來源:breakout_dqn.py

示例5: optimizer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def optimizer(self):
        a = K.placeholder(shape=(None, ), dtype='int32')
        y = K.placeholder(shape=(None, ), dtype='float32')

        py_x = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(py_x * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # approximate Q function using Convolution Neural Network
    # state is input and Q Value of each action is output of network 
開發者ID:rlcode,項目名稱:reinforcement-learning,代碼行數:24,代碼來源:breakout_ddqn.py

示例6: optimizer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def optimizer(self):
        a = K.placeholder(shape=(None,), dtype='int32')
        y = K.placeholder(shape=(None,), dtype='float32')

        py_x = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(py_x * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # approximate Q function using Convolution Neural Network
    # state is input and Q Value of each action is output of network 
開發者ID:rlcode,項目名稱:reinforcement-learning,代碼行數:24,代碼來源:breakout_dqn.py

示例7: optimizer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def optimizer(self):
        a = K.placeholder(shape=(None, ), dtype='int32')
        y = K.placeholder(shape=(None, ), dtype='float32')

        py_x = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(py_x * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # approximate Q function using Convolution Neural Network
    # state is input and Q Value of each action is output of network
    # dueling network's Q Value is sum of advantages and state value 
開發者ID:rlcode,項目名稱:reinforcement-learning,代碼行數:25,代碼來源:breakout_dueling_ddqn.py

示例8: loss_function

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def loss_function(self, y_true, y_pred):

        y, u, a, b = _keras_split(y_true, y_pred)
        if self.kind == 'discrete':
            loglikelihoods = loglik_discrete(y, u, a, b)
        elif self.kind == 'continuous':
            loglikelihoods = loglik_continuous(y, u, a, b)

        if self.clip_prob is not None:
            loglikelihoods = K.clip(loglikelihoods, 
                log(self.clip_prob), log(1 - self.clip_prob))
        if self.reduce_loss:
            loss = -1.0 * K.mean(loglikelihoods, axis=-1)
        else:
            loss = -loglikelihoods

        return loss

# For backwards-compatibility 
開發者ID:ragulpr,項目名稱:wtte-rnn,代碼行數:21,代碼來源:wtte.py

示例9: angle_error

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def angle_error(gt, pred):
    """
    Average angular error computed by cosine difference
    :param gt: list of ground truth label
    :param pred: list of predicted label
    :return: Average angular error
    """
    vec_gt = angles2vector(gt)
    vec_pred = angles2vector(pred)

    x = K.np.multiply(vec_gt[:, 0], vec_pred[:, 0])
    y = K.np.multiply(vec_gt[:, 1], vec_pred[:, 1])
    z = K.np.multiply(vec_gt[:, 2], vec_pred[:, 2])

    dif = K.np.sum([x, y, z], axis=0) / (tf.norm(vec_gt, axis=1) * tf.norm(vec_pred, axis=1))

    clipped_dif = K.clip(dif, np.float(-1.0), np.float(1.0))
    loss = (tf.acos(clipped_dif) * 180) / np.pi
    return K.mean(loss, axis=-1) 
開發者ID:crisie,項目名稱:RecurrentGaze,代碼行數:21,代碼來源:data_utils.py

示例10: numpy_angle_error

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def numpy_angle_error(gt, pred):
    """
    Numpy version of angle_error. Average angular error computed by cosine difference
    :param gt: list of ground truth label
    :param pred: list of predicted label
    :return: Average angular error
    """
    vec_gt = numpy_angles2vector(gt)
    vec_pred = numpy_angles2vector(pred)

    x = np.multiply(vec_gt[:, 0], vec_pred[:, 0])
    y = np.multiply(vec_gt[:, 1], vec_pred[:, 1])
    z = np.multiply(vec_gt[:, 2], vec_pred[:, 2])

    dif = np.sum([x, y, z], axis=0) / (np.linalg.norm(vec_gt, axis=1) * np.linalg.norm(vec_pred, axis=1))

    clipped_dif = np.clip(dif, np.float(-1.0), np.float(1.0))
    loss = (np.arccos(clipped_dif) * 180) / np.pi
    return np.mean(loss, axis=-1) 
開發者ID:crisie,項目名稱:RecurrentGaze,代碼行數:21,代碼來源:data_utils.py

示例11: crossentropy_reed_wrap

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def crossentropy_reed_wrap(_beta):
    def crossentropy_reed_core(y_true, y_pred):
        """
        This loss function is proposed in:
        Reed et al. "Training Deep Neural Networks on Noisy Labels with Bootstrapping", 2014

        :param y_true:
        :param y_pred:
        :return:
        """

        # hyper param
        print(_beta)
        y_pred = K.clip(y_pred, K.epsilon(), 1)

        # (1) dynamically update the targets based on the current state of the model: bootstrapped target tensor
        # use predicted class proba directly to generate regression targets
        y_true_update = _beta * y_true + (1 - _beta) * y_pred

        # (2) compute loss as always
        _loss = -K.sum(y_true_update * K.log(y_pred), axis=-1)

        return _loss
    return crossentropy_reed_core 
開發者ID:edufonseca,項目名稱:icassp19,代碼行數:26,代碼來源:losses.py

示例12: ssim

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def ssim(x, y):
    c1 = 0.01 ** 2

    c2 = 0.03 ** 2

    mu_x = K.mean(x, axis=-1)

    mu_y = K.mean(y, axis=-1)

    sigma_x = K.mean(x ** 2, axis=-1) - mu_x ** 2

    sigma_y = K.mean(y ** 2, axis=-1) - mu_y ** 2

    sigma_xy = K.mean(x * y, axis=-1) - mu_x * mu_y

    ssim_n = (2 * mu_x * mu_y + c1) * (2 * sigma_xy + c2)

    ssim_d = (mu_x ** 2 + mu_y ** 2 + c1) * (sigma_x + sigma_y + c2)

    ssim_out = ssim_n / ssim_d

    return K.clip((1 - ssim_out) / 2, 0, 1) 
開發者ID:drmaj,項目名稱:UnDeepVO,代碼行數:24,代碼來源:losses.py

示例13: softmax_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def softmax_loss(y_true, y_pred):
    """Compute cross entropy loss aka softmax loss.

    # Arguments
        y_true: Ground truth targets,
            tensor of shape (?, num_boxes, num_classes).
        y_pred: Predicted logits,
            tensor of shape (?, num_boxes, num_classes).

    # Returns
        softmax_loss: Softmax loss, tensor of shape (?, num_boxes).
    """
    eps = K.epsilon()
    y_pred = K.clip(y_pred, eps, 1. - eps)
    softmax_loss = -tf.reduce_sum(y_true * tf.log(y_pred), axis=-1)
    return softmax_loss 
開發者ID:mogoweb,項目名稱:aiexamples,代碼行數:18,代碼來源:training.py

示例14: focal_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def focal_loss(y_true, y_pred, gamma=2, alpha=0.25):
    """Compute focal loss.
    
    # Arguments
        y_true: Ground truth targets,
            tensor of shape (?, num_boxes, num_classes).
        y_pred: Predicted logits,
            tensor of shape (?, num_boxes, num_classes).
    
    # Returns
        focal_loss: Focal loss, tensor of shape (?, num_boxes).

    # References
        https://arxiv.org/abs/1708.02002
    """
    #y_pred /= K.sum(y_pred, axis=-1, keepdims=True)
    eps = K.epsilon()
    y_pred = K.clip(y_pred, eps, 1. - eps)
    
    pt = tf.where(tf.equal(y_true, 1), y_pred, 1 - y_pred)
    focal_loss = -tf.reduce_sum(alpha * K.pow(1. - pt, gamma) * K.log(pt), axis=-1)
    return focal_loss 
開發者ID:mogoweb,項目名稱:aiexamples,代碼行數:24,代碼來源:training.py

示例15: f1

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clip [as 別名]
def f1(y_true, y_pred):
    def precision(y_true, y_pred):
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
        predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
        precision = true_positives / (predicted_positives + K.epsilon())
        return precision

    def recall(y_true, y_pred):
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
        possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
        recall = true_positives / (possible_positives + K.epsilon())
        return recall

    precision = precision(y_true, y_pred)
    recall = recall(y_true, y_pred)
    return 2 * ((precision * recall) / (precision + recall + K.epsilon()))


# Inception_ResNet_V2 model define 
開發者ID:AKASH2907,項目名稱:bird_species_classification,代碼行數:21,代碼來源:inception_resnet_v2_finetune.py


注:本文中的keras.backend.clip方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。