當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.clear_session方法代碼示例

本文整理匯總了Python中keras.backend.clear_session方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.clear_session方法的具體用法?Python backend.clear_session怎麽用?Python backend.clear_session使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.clear_session方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: helper_test

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def helper_test(model):
    img_path = "../examples/dog.jpg"
    new_model = to_heatmap(model)

    # Loading the image
    img = image.load_img(img_path, target_size=(800, 800))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    out = new_model.predict(x)

    s = "n02084071"  # Imagenet code for "dog"
    ids = synset_to_dfs_ids(s)
    heatmap = out[0]
    if K.image_data_format() == 'channels_first':
        heatmap = heatmap[ids]
        heatmap = np.sum(heatmap, axis=0)
    else:
        heatmap = heatmap[:, :, ids]
        heatmap = np.sum(heatmap, axis=2)
    print(heatmap.shape)
    assert heatmap.shape[0] == heatmap.shape[1]
    K.clear_session() 
開發者ID:gabrieldemarmiesse,項目名稱:heatmaps,代碼行數:26,代碼來源:helper.py

示例2: CapsuleNet

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def CapsuleNet(n_capsule = 10, n_routings = 5, capsule_dim = 16,
     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):
    K.clear_session()

    inputs = Input(shape=(170,))
    x = Embedding(21099, 300,  trainable=True)(inputs)        
    x = SpatialDropout1D(dropout_rate)(x)
    x = Bidirectional(
        CuDNNGRU(n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x)
    x = PReLU()(x)
    x = Capsule(
        num_capsule=n_capsule, dim_capsule=capsule_dim,
        routings=n_routings, share_weights=True)(x)
    x = Flatten(name = 'concatenate')(x)
    x = Dropout(dropout_rate)(x)
#     fc = Dense(128, activation='sigmoid')(x)
    outputs = Dense(6, activation='softmax')(x)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:24,代碼來源:models.py

示例3: CapsuleNet_v2

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def CapsuleNet_v2(n_capsule = 10, n_routings = 5, capsule_dim = 16,
     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):
    K.clear_session()

    inputs = Input(shape=(200,))
    x = Embedding(20000, 300,  trainable=True)(inputs)        
    x = SpatialDropout1D(dropout_rate)(x)
    x = Bidirectional(
        CuDNNGRU(n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x)
    x = PReLU()(x)
    x = Capsule(
        num_capsule=n_capsule, dim_capsule=capsule_dim,
        routings=n_routings, share_weights=True)(x)
    x = Flatten(name = 'concatenate')(x)
    x = Dropout(dropout_rate)(x)
#     fc = Dense(128, activation='sigmoid')(x)
    outputs = Dense(6, activation='softmax')(x)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:24,代碼來源:models.py

示例4: download

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def download(cls, architecture, path="./"):
        if architecture in cls.thirdparty_map:
            weight_file = download_file(cls.thirdparty_map[architecture], directory=path)
            return weight_file

        elif cls.sanity_check(architecture):
            output_filename = path + 'imagenet_{}.h5'.format(architecture)
            if os.path.exists(output_filename) == False:
                model = cls.architecture_map[architecture]()
                model.save(output_filename)
                print("Keras model {} is saved in [{}]".format(architecture, output_filename))
                K.clear_session()
                del model
                return output_filename

            else:
                print("File [{}] existed, skip download.".format(output_filename))
                return output_filename

        else:
            return None 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:23,代碼來源:extractor.py

示例5: inference

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def inference(cls, architecture, files, path, image_path):
        if architecture in cls.thirdparty_map:
            model = keras.models.load_model(files)

        elif cls.sanity_check(architecture):
            model = cls.architecture_map[architecture]()

        else:
            model = None

        if model:
            import numpy as np
            func = TestKit.preprocess_func['keras'][architecture]
            img = func(image_path)
            img = np.expand_dims(img, axis=0)
            predict = model.predict(img)
            predict = np.squeeze(predict)
            K.clear_session()
            del model
            return predict

        else:
            return None 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:25,代碼來源:extractor.py

示例6: _handle_broken_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def _handle_broken_model(self, model, error):
        del model

        n = self.genome_handler.n_classes
        loss = log_loss(np.concatenate(([1], np.zeros(n - 1))), np.ones(n) / n)
        accuracy = 1 / n
        gc.collect()

        if K.backend() == 'tensorflow':
            K.clear_session()
            tf.reset_default_graph()

        print('An error occurred and the model could not train:')
        print(error)
        print(('Model assigned poor score. Please ensure that your model'
               'constraints live within your computational resources.'))
        return loss, accuracy 
開發者ID:joeddav,項目名稱:devol,代碼行數:19,代碼來源:devol.py

示例7: initialize

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def initialize(self, model, model_as_file):

        K.clear_session()

        if model_as_file:
            with open(model, 'r') as f:
                self.json_info = json.load(f)
        else:
            self.json_info = json.loads(model)

        model_path = self.json_info['ModelFile']
        if model_as_file and not os.path.isabs(model_path):
            model_path = os.path.abspath(os.path.join(os.path.dirname(model), model_path))

        if arcpy.env.processorType != "GPU":
            os.environ['CUDA_VISIBLE_DEVICES'] = "-1"

        # load the trained model
        self.model = load_model(model_path)
        self.graph = tf.get_default_graph() 
開發者ID:Esri,項目名稱:raster-deep-learning,代碼行數:22,代碼來源:KerasClassifier.py

示例8: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def __init__(self, model_file):
        self.model_file = model_file
        K.clear_session()  # restart session
        self.model = load_model(model_file, compile=False)
        self.contrib_fns = {} 
開發者ID:kipoi,項目名稱:models,代碼行數:7,代碼來源:model.py

示例9: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def __init__(self):

        from keras import backend as K
        K.clear_session()

        self.model_names = read_txt("models.txt")
        # hard-code the path to this models
        # if we'd use `source='dir'`, then the models wouldn't
        # be updated
        self.models = [kipoi.get_model("CpGenie/{0}".format(m), source='kipoi',
                                       with_dataloader=False)
                       for m in self.model_names] 
開發者ID:kipoi,項目名稱:models,代碼行數:14,代碼來源:model.py

示例10: create_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    # y_true = [Input(shape=(416//{0:32, 1:16, 2:8}[l], 416//{0:32, 1:16, 2:8}[l], 9//3, 80+5)) for l in range(3)]
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    print('model_body.input: ', model_body.input)
    print('model.input: ', model.input)

    return model 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:33,代碼來源:train.py

示例11: create_tiny_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/tiny_yolo_weights.h5'):
    '''create the training model, for Tiny YOLOv3'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
        num_anchors//2, num_classes+5)) for l in range(2)]

    model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
    print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze the darknet body or freeze all but 2 output layers.
            num = (20, len(model_body.layers)-2)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:31,代碼來源:train.py

示例12: __config_gpu_for_keras

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def __config_gpu_for_keras():
    import tensorflow as tf
    import keras.backend as K

    gpu_core_id = __parse_gpu_id()

    K.clear_session()
    config = tf.ConfigProto()
    config.gpu_options.visible_device_list = str(gpu_core_id)
    config.gpu_options.allow_growth = True
    session = tf.Session(config=config)
    K.set_session(session)

    # set which device to be used
    const.GPU_CORE_ID = gpu_core_id 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:17,代碼來源:config_utils.py

示例13: create_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
            weights_path='model_data/yolo_weights.h5'):
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body:
            # Do not freeze 3 output layers.
            num = len(model_body.layers)-7
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model 
開發者ID:lijialinneu,項目名稱:keras-yolo3-master,代碼行數:28,代碼來源:train.py

示例14: clear

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def clear():
    K.clear_session()


## Agents 
開發者ID:naripok,項目名稱:cryptotrader,代碼行數:7,代碼來源:tf_agents.py

示例15: pred_evaluate

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import clear_session [as 別名]
def pred_evaluate(config):
    db=config["db"] #"amazon" 
    out_dir=config["out_dir"]
    model_type=config["model_type"]
    top_n=config["top_n"] #10
    vote_n=1 #1 #typically 1, we disable manual vote; when top_n=1, we optionally vote

    scores={}

    data=np.load("../"+db+"/data/valid_50_idx.npz")
    sess=tf.Session()
    K.set_session(sess)
    model_fn=out_dir+"eval.h5"
    model=keras.models.load_model(model_fn)
    model.get_layer("embedding_1").set_weights([np.vstack([data['train_rep'], np.zeros((95000, 512))]) ])

    thres=0.5
    y_pred=l2ac_predict(model, data, top_n, vote_n)

    weighted_f1, _, _=evaluate(data['test_Y'], y_pred, thres=thres, rejection=True, mode="weighted")
    macro_f1, _, _=evaluate(data['test_Y'], y_pred, thres=thres, rejection=True, mode="macro")
    micro_f1, _, _=evaluate(data['test_Y'], y_pred, thres=thres, rejection=True, mode="micro")
    scores={'weighted_f1': weighted_f1, 'macro_f1': macro_f1, 'micro_f1': micro_f1}

    K.clear_session() 
    print scores["weighted_f1"]
    with open(out_dir+"valid.json", "w") as fw:
        json.dump(scores, fw) 
開發者ID:howardhsu,項目名稱:Meta-Open-World-Learning,代碼行數:30,代碼來源:validate.py


注:本文中的keras.backend.clear_session方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。