當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.categorical_crossentropy方法代碼示例

本文整理匯總了Python中keras.backend.categorical_crossentropy方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.categorical_crossentropy方法的具體用法?Python backend.categorical_crossentropy怎麽用?Python backend.categorical_crossentropy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.categorical_crossentropy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: categorical_crossentropy_color

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def categorical_crossentropy_color(y_true, y_pred):

    # Flatten
    n, h, w, q = y_true.shape
    y_true = K.reshape(y_true, (n * h * w, q))
    y_pred = K.reshape(y_pred, (n * h * w, q))

    weights = y_true[:, 313:]  # extract weight from y_true
    weights = K.concatenate([weights] * 313, axis=1)
    y_true = y_true[:, :-1]  # remove last column
    y_pred = y_pred[:, :-1]  # remove last column

    # multiply y_true by weights
    y_true = y_true * weights

    cross_ent = K.categorical_crossentropy(y_pred, y_true)
    cross_ent = K.mean(cross_ent, axis=-1)

    return cross_ent 
開發者ID:tdeboissiere,項目名稱:DeepLearningImplementations,代碼行數:21,代碼來源:train_colorful.py

示例2: gen_adv_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def gen_adv_loss(logits, y, loss='logloss', mean=False):
    """
    Generate the loss function.
    """

    if loss == 'training':
        # use the model's output instead of the true labels to avoid
        # label leaking at training time
        y = K.cast(K.equal(logits, K.max(logits, 1, keepdims=True)), "float32")
        y = y / K.sum(y, 1, keepdims=True)
        out = K.categorical_crossentropy(y, logits, from_logits=True)
    elif loss == 'logloss':
        out = K.categorical_crossentropy(y, logits, from_logits=True)
    else:
        raise ValueError("Unknown loss: {}".format(loss))

    if mean:
        out = K.mean(out)
    # else:
    #     out = K.sum(out)
    return out 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:23,代碼來源:attack_utils.py

示例3: gen_adv_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def gen_adv_loss(logits, y, loss='logloss', mean=False):
    """
    Generate the loss function.
    """

    if loss == 'training':
        # use the model's output instead of the true labels to avoid
        # label leaking at training time
        y = K.cast(K.equal(logits, K.max(logits, 1, keepdims=True)), "float32")
        y = y / K.sum(y, 1, keepdims=True)
        out = K.categorical_crossentropy(logits, y, from_logits=True)
    elif loss == 'logloss':
        # out = K.categorical_crossentropy(logits, y, from_logits=True)
        out = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)
        out = tf.reduce_mean(out)
    else:
        raise ValueError("Unknown loss: {}".format(loss))

    if mean:
        out = tf.mean(out)
    # else:
    #     out = K.sum(out)
    return out 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:25,代碼來源:attack_utils.py

示例4: build_3dcnn_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def build_3dcnn_model(self, fusion_type, Fusion):
        if len(Fusion[0]) == 1: 
            input_shape = (32, 32, len(Fusion))
            model_in,model = self.cnn_2D(input_shape) 
        else:
            input_shape = (32, 32, 5, len(Fusion))
            model_in,model = self.cnn_3D(input_shape) 
        model = Dropout(0.5)(model)
        model = Dense(32, activation='relu', name = 'fc2')(model)
        model = Dense(self.config.classes, activation='softmax', name = 'fc3')(model) 
        model = Model(input=model_in,output=model)
        # 統計參數
        # model.summary()
        plot_model(model,to_file='experiments/img/' + str(Fusion) + fusion_type + r'_model.png',show_shapes=True)
        print('    Saving model  Architecture')
        
        adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
        # model.compile(optimizer=adam, loss=self.mycrossentropy, metrics=['accuracy']) #有改善,但不穩定
        model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy']) 
        
        return model 
開發者ID:xyj77,項目名稱:MCF-3D-CNN,代碼行數:23,代碼來源:liver_model.py

示例5: load_model_and_generate

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def load_model_and_generate(self, model_name='model7_laf', epochs=10):
        dt = datetime.datetime.now().strftime('_date_%Y-%m-%d_%H-%M-%S')
        dir_name = './generated_results/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/'
        if not os.path.exists(dir_name):
            os.makedirs(dir_name)

        model = load_model('./model_checkpoint/best_models/'
                           'model7_laf_date_2018-06-19_12-23-39_epoch_30_val_loss_0.8395.h5',
                           compile=False)
        optimizer = Adam(lr=0.0001)  # Reduce from 0.001 to 0.0001 for model_10
        model.compile(optimizer=optimizer,
                      loss='categorical_crossentropy',
                      # metrics=['accuracy']
                      metrics=['accuracy'])

        seq = self.generate_and_fuzz_new_samples(model=model,
                                      model_name=model_name,
                                      epochs=epochs,
                                      current_epoch=10,
                                      dir_name=dir_name)

        list_of_obj = preprocess.get_list_of_object(seq=seq, is_sort=False)
        return list_of_obj 
開發者ID:m-zakeri,項目名稱:iust_deep_fuzz,代碼行數:25,代碼來源:learn_and_fuzz_2.py

示例6: load_model_and_generate

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def load_model_and_generate(self, model_name='model_7', epochs=38):
        dt = datetime.datetime.now().strftime('_date_%Y-%m-%d_%H-%M-%S')
        dir_name = './generated_results/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/'
        if not os.path.exists(dir_name):
            os.makedirs(dir_name)

        model = load_model('./model_checkpoint/best_models/'
                           'model_7_date_2018-05-14_21-44-21_epoch_38_val_loss_0.3300.h5',
                           compile=False)
        optimizer = Adam(lr=0.001)  # Reduce from 0.001 to 0.0001 just for model_10

        model.compile(optimizer=optimizer,
                      loss='categorical_crossentropy',
                      # metrics=['accuracy']
                      metrics=['accuracy'])

        seq = self.generate_and_fuzz_new_samples(model=model,
                                      model_name=model_name,
                                      epochs=epochs,
                                      current_epoch=38,
                                      dir_name=dir_name)

        list_of_obj = preprocess.get_list_of_object(seq=seq, is_sort=False)
        return list_of_obj 
開發者ID:m-zakeri,項目名稱:iust_deep_fuzz,代碼行數:26,代碼來源:metadata_neural_fuzz_pdf_obj.py

示例7: load_model_and_generate

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def load_model_and_generate(self, model_name='model7_laf', epochs=50):
        dt = datetime.datetime.now().strftime('_date_%Y-%m-%d_%H-%M-%S')
        dir_name = './generated_results/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/'
        if not os.path.exists(dir_name):
            os.makedirs(dir_name)

        model = load_model('./model_checkpoint/best_models/'
                           'model7_laf_date_2018-06-19_12-23-39_epoch_50_val_loss_0.7242.h5',
                           compile=False)
        optimizer = Adam(lr=0.0001)  # Reduce from 0.001 to 0.0001 for model_10
        model.compile(optimizer=optimizer,
                      loss='categorical_crossentropy',
                      # metrics=['accuracy']
                      metrics=['accuracy'])

        seq = self.generate_and_fuzz_new_samples(model=model,
                                      model_name=model_name,
                                      epochs=epochs,
                                      current_epoch=50,
                                      dir_name=dir_name)

        list_of_obj = preprocess.get_list_of_object(seq=seq, is_sort=False)
        return list_of_obj 
開發者ID:m-zakeri,項目名稱:iust_deep_fuzz,代碼行數:25,代碼來源:learn_and_fuzz_3_sample_fuzz.py

示例8: augmented_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def augmented_loss(self, y_true, y_pred):
        _y_pred = Activation("softmax")(y_pred)
        loss = K.categorical_crossentropy(_y_pred, y_true)

        # y is (batch x seq x vocab)
        y_indexes = K.argmax(y_true, axis=2)  # turn one hot to index. (batch x seq)
        y_vectors = self.embedding(y_indexes)  # lookup the vector (batch x seq x vector_length)

        #v_length = self.setting.vector_length
        #y_vectors = K.reshape(y_vectors, (-1, v_length))
        #y_t = K.map_fn(lambda v: K.dot(self.embedding.embeddings, K.reshape(v, (-1, 1))), y_vectors)
        #y_t = K.squeeze(y_t, axis=2)  # unknown but necessary operation
        #y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size))

        # vector x embedding dot products (batch x seq x vocab)
        y_t = tf.tensordot(y_vectors, K.transpose(self.embedding.embeddings), 1)
        y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size))  # explicitly set shape
        y_t = K.softmax(y_t / self.temperature)
        _y_pred_t = Activation("softmax")(y_pred / self.temperature)
        aug_loss = kullback_leibler_divergence(y_t, _y_pred_t)
        loss += (self.gamma * self.temperature) * aug_loss
        return loss 
開發者ID:icoxfog417,項目名稱:tying-wv-and-wc,代碼行數:24,代碼來源:augmented_model.py

示例9: abstention_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def abstention_loss(y_true, y_pred):
    """ Function to compute abstention loss. It is composed by two terms: (i) original loss of the multiclass classification problem, (ii) cost associated to the abstaining samples.
    
    Parameters
    ----------
    y_true : keras tensor
        True values to predict
    y_pred : keras tensor
        Prediction made by the model. It is assumed that this keras tensor includes extra columns to store the abstaining classes.
    """
    cost = 0
    base_pred = (1-mask)*y_pred
    base_true = y_true
    base_cost = K.categorical_crossentropy(base_true,base_pred)
    abs_pred = K.mean(mask*y_pred, axis=-1)
    cost = (1.-abs_pred)*base_cost - mu*K.log(1.-abs_pred)

    return cost 
開發者ID:ECP-CANDLE,項目名稱:Benchmarks,代碼行數:20,代碼來源:uq_keras_utils.py

示例10: gen_adv_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def gen_adv_loss(logits, y, loss='logloss', mean=False):
    """
    Generate the loss function.
    """

    if loss == 'training':
        # use the model's output instead of the true labels to avoid
        # label leaking at training time
        y = K.cast(K.equal(logits, K.max(logits, 1, keepdims=True)), "float32")
        y = y / K.sum(y, 1, keepdims=True)
        out = K.categorical_crossentropy(logits, y, from_logits=True)
    elif loss == 'logloss':
        out = K.categorical_crossentropy(logits, y, from_logits=True)
    else:
        raise ValueError("Unknown loss: {}".format(loss))

    if mean:
        out = K.mean(out)
    else:
        out = K.sum(out)
    return out 
開發者ID:ftramer,項目名稱:ensemble-adv-training,代碼行數:23,代碼來源:attack_utils.py

示例11: gen_grad_ens

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def gen_grad_ens(x, logits, y):

    adv_loss = K.categorical_crossentropy(logits[0], y, from_logits=True)
    if len(logits) >= 1:
        for i in range(1, len(logits)):
            adv_loss += K.categorical_crossentropy(logits[i], y, from_logits=True)

    grad = K.gradients(adv_loss, [x])[0]
    return adv_loss, grad 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:11,代碼來源:attack_utils.py

示例12: loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def loss(y_true, y_pred):
    loss = K.categorical_crossentropy(y_true,y_pred)
    return loss 
開發者ID:bubbliiiing,項目名稱:Semantic-Segmentation,代碼行數:5,代碼來源:train.py

示例13: build_fusion_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def build_fusion_model(self, fusion_type, Fusion):
        model_list = []
        input_list = []
        for modual in Fusion:
            if len(modual) == 1: 
                input_shape = (32, 32, 1)
                signle_input,single_model = self.cnn_2D(input_shape, modual) 
            else:
                input_shape = (32, 32, 5, 1)
                signle_input,single_model = self.cnn_3D(input_shape, modual) 
                  
            model_list.append(single_model)
            input_list.append(signle_input)
        # 融合模型
        model = self.nn_fusion(input_list,model_list, self.config.classes, fusion_type)
        # 統計參數
        model.summary()
        plot_model(model,to_file='experiments/img/' + str(Fusion) + fusion_type + r'_model.png',show_shapes=True)
        print('    Saving model  Architecture')
        # raw_input()
        
        adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
        # model.compile(optimizer=adam, loss=self.mycrossentropy, metrics=['accuracy']) #有改善,但不穩定
        model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy']) 
        
        return model 
開發者ID:xyj77,項目名稱:MCF-3D-CNN,代碼行數:28,代碼來源:liver_model.py

示例14: mycrossentropy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def mycrossentropy(self, y_true, y_pred):
        e = 0.3
        # for i in range(y_true.shape[0]):
            # for j in range(3):
                # sum += 0.1*(-1**y_true(i,j))*exp(abs(np.argmax(y_true[i,:])-j))*log(y_pred(i,j))
        # return sum/len

        # y = np.argmax(y_true, axis=1)
        # y_ = np.argmax(y_pred, axis=1)
        # print '*****************',y_pred
                
        # return (1-e)*K.categorical_crossentropy(y_pred,y_true) - e*K.categorical_crossentropy(y_pred, (1-y_true)/(self.config.classes-1)) 
        return (1-e)*K.categorical_crossentropy(y_pred,y_true) + e*K.categorical_crossentropy(y_pred, K.ones_like(y_pred)/2) 
開發者ID:xyj77,項目名稱:MCF-3D-CNN,代碼行數:15,代碼來源:liver_model.py

示例15: truncated_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import categorical_crossentropy [as 別名]
def truncated_loss(y_true, y_pred):
    y_true = y_true[:, :VAL_MAXLEN, :]
    y_pred = y_pred[:, :VAL_MAXLEN, :]
    
    loss = K.categorical_crossentropy(
        target=y_true, output=y_pred, from_logits=False)
    return K.mean(loss, axis=-1) 
開發者ID:vuptran,項目名稱:deep-spell-checkr,代碼行數:9,代碼來源:model.py


注:本文中的keras.backend.categorical_crossentropy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。