當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.binary_crossentropy方法代碼示例

本文整理匯總了Python中keras.backend.binary_crossentropy方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.binary_crossentropy方法的具體用法?Python backend.binary_crossentropy怎麽用?Python backend.binary_crossentropy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.binary_crossentropy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: vae_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def vae_loss(self, x, x_decoded_mean):
        xent_loss =  K.sum(K.binary_crossentropy(x_decoded_mean, x), axis=-1)
        kl_loss = - 0.5 * K.sum(1 + self.z_log_var - K.square(self.z_mean) - K.exp(self.z_log_var), axis=-1)

        return xent_loss + kl_loss

    # def weighted_vae_loss(self, feature_weights):
    #     def loss(y_true, y_pred):
    #         try:
    #             x = K.binary_crossentropy(y_pred, y_true)
    #             y = tf.Variable(feature_weights.astype('float32'))
    #             # y2 = y_true / K.sum(y_true)
    #             # import pdb;pdb.set_trace()
    #             xent_loss = K.dot(x, y)
    #             kl_loss = - 0.5 * K.sum(1 + self.z_log_var - K.square(self.z_mean) - K.exp(self.z_log_var), axis=-1)
    #         except Exception as e:
    #             print e
    #             import pdb;pdb.set_trace()
    #         return xent_loss + kl_loss
    #     return loss 
開發者ID:hugochan,項目名稱:KATE,代碼行數:22,代碼來源:vae.py

示例2: online_bootstrapping

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def online_bootstrapping(y_true, y_pred, pixels=512, threshold=0.5):
    """ Implements nline Bootstrapping crossentropy loss, to train only on hard pixels,
        see  https://arxiv.org/abs/1605.06885 Bridging Category-level and Instance-level Semantic Image Segmentation
        The implementation is a bit different as we use binary crossentropy instead of softmax
        SUPPORTS ONLY MINIBATCH WITH 1 ELEMENT!
    # Arguments
        y_true: A tensor with labels.

        y_pred: A tensor with predicted probabilites.

        pixels: number of hard pixels to keep

        threshold: confidence to use, i.e. if threshold is 0.7, y_true=1, prediction=0.65 then we consider that pixel as hard
    # Returns
        Mean loss value
    """
    y_true = K.flatten(y_true)
    y_pred = K.flatten(y_pred)
    difference = K.abs(y_true - y_pred)

    values, indices = K.tf.nn.top_k(difference, sorted=True, k=pixels)
    min_difference = (1 - threshold)
    y_true = K.tf.gather(K.gather(y_true, indices), K.tf.where(values > min_difference))
    y_pred = K.tf.gather(K.gather(y_pred, indices), K.tf.where(values > min_difference))

    return K.mean(K.binary_crossentropy(y_true, y_pred)) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:28,代碼來源:losses.py

示例3: bce_border

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def bce_border(y_true, y_pred):
    border = get_border_mask((21, 21), y_true)

    border = K.flatten(border)
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    y_true_f = K.tf.gather(y_true_f, K.tf.where(border > 0.5))
    y_pred_f = K.tf.gather(y_pred_f, K.tf.where(border > 0.5))

    return binary_crossentropy(y_true_f, y_pred_f) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:12,代碼來源:losses.py

示例4: make_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def make_loss(loss_name):
    if loss_name == 'crossentropy':
        return K.binary_crossentropy
    elif loss_name == 'crossentropy_boot':
        def loss(y, p):
            return bootstrapped_crossentropy(y, p, 'hard', 0.9)
        return loss
    elif loss_name == 'dice':
        return dice_coef_loss
    elif loss_name == 'bce_dice':
        def loss(y, p):
            return dice_coef_loss_bce(y, p, dice=0.8, bce=0.2, bootstrapping='soft', alpha=1)

        return loss
    elif loss_name == 'boot_soft':
        def loss(y, p):
            return dice_coef_loss_bce(y, p, dice=0.8, bce=0.2, bootstrapping='soft', alpha=0.95)

        return loss
    elif loss_name == 'boot_hard':
        def loss(y, p):
            return dice_coef_loss_bce(y, p, dice=0.8, bce=0.2, bootstrapping='hard', alpha=0.95)

        return loss
    elif loss_name == 'online_bootstrapping':
        def loss(y, p):
            return online_bootstrapping(y, p, pixels=512 * 64, threshold=0.7)

        return loss
    elif loss_name == 'dice_coef_loss_border':
        return dice_coef_loss_border
    elif loss_name == 'bce_dice_loss_border':
        return bce_dice_loss_border
    else:
        ValueError("Unknown loss.") 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:37,代碼來源:losses.py

示例5: rpn_loss_cls

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def rpn_loss_cls(num_anchors):
	def rpn_loss_cls_fixed_num(y_true, y_pred):
		if K.image_dim_ordering() == 'tf':
			return lambda_rpn_class * K.sum(y_true[:, :, :, :num_anchors] * K.binary_crossentropy(y_pred[:, :, :, :], y_true[:, :, :, num_anchors:])) / K.sum(epsilon + y_true[:, :, :, :num_anchors])
		else:
			return lambda_rpn_class * K.sum(y_true[:, :num_anchors, :, :] * K.binary_crossentropy(y_pred[:, :, :, :], y_true[:, num_anchors:, :, :])) / K.sum(epsilon + y_true[:, :num_anchors, :, :])

	return rpn_loss_cls_fixed_num 
開發者ID:akshaylamba,項目名稱:FasterRCNN_KERAS,代碼行數:10,代碼來源:losses.py

示例6: mrcnn_mask_loss_graph

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks):
    """Mask binary cross-entropy loss for the masks head.
    target_masks: [batch, num_rois, height, width].
        A float32 tensor of values 0 or 1. Uses zero padding to fill array.
    target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded.
    pred_masks: [batch, proposals, height, width, num_classes] float32 tensor
                with values from 0 to 1.
    """
    # Reshape for simplicity. Merge first two dimensions into one.
    target_class_ids = K.reshape(target_class_ids, (-1,))
    mask_shape = tf.shape(target_masks)
    target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3]))
    pred_shape = tf.shape(pred_masks)
    pred_masks = K.reshape(pred_masks,
                           (-1, pred_shape[2], pred_shape[3], pred_shape[4]))
    # Permute predicted masks to [N, num_classes, height, width]
    pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2])

    # Only positive ROIs contribute to the loss. And only
    # the class specific mask of each ROI.
    positive_ix = tf.where(target_class_ids > 0)[:, 0]
    positive_class_ids = tf.cast(
        tf.gather(target_class_ids, positive_ix), tf.int64)
    indices = tf.stack([positive_ix, positive_class_ids], axis=1)

    # Gather the masks (predicted and true) that contribute to loss
    y_true = tf.gather(target_masks, positive_ix)
    y_pred = tf.gather_nd(pred_masks, indices)

    # Compute binary cross entropy. If no positive ROIs, then return 0.
    # shape: [batch, roi, num_classes]
    loss = K.switch(tf.size(y_true) > 0,
                    K.binary_crossentropy(target=y_true, output=y_pred),
                    tf.constant(0.0))
    loss = K.mean(loss)
    return loss


############################################################
#  Data Generator
############################################################ 
開發者ID:dataiku,項目名稱:dataiku-contrib,代碼行數:43,代碼來源:model.py

示例7: rpn_loss_cls

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def rpn_loss_cls(num_anchors):
    def rpn_loss_cls_fixed_num(y_true, y_pred):
        if K.image_dim_ordering() == 'tf':
            return lambda_rpn_class * K.sum(y_true[:, :, :, :num_anchors] * K.binary_crossentropy(y_pred[:, :, :, :], y_true[:, :, :, num_anchors:])) / K.sum(epsilon + y_true[:, :, :, :num_anchors])
        else:
            return lambda_rpn_class * K.sum(y_true[:, :num_anchors, :, :] * K.binary_crossentropy(y_pred[:, :, :, :], y_true[:, num_anchors:, :, :])) / K.sum(epsilon + y_true[:, :num_anchors, :, :])

    return rpn_loss_cls_fixed_num 
開發者ID:you359,項目名稱:Keras-FasterRCNN,代碼行數:10,代碼來源:losses.py

示例8: load_ref_model

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def load_ref_model(model_file=None):
    """Loads the Chemnet model. If called without arguments it will use the
    model in the package. In case you want to use a different one provide the path

    Args:
        model_file: Path to model. (default=None)
    """

    if model_file is None:
        chemnet_model_filename = 'ChemNet_v0.13_pretrained.h5'
        model_bytes = pkgutil.get_data('fcd', chemnet_model_filename)

        tmpdir = tempfile.TemporaryDirectory()
        model_file = os.path.join(tmpdir.name, chemnet_model_filename)

        with open(model_file, 'wb') as f:
            f.write(model_bytes)

    masked_loss_function = build_masked_loss(K.binary_crossentropy, 0.5)
    model = load_model(
        model_file,
        custom_objects={
            'masked_loss_function': masked_loss_function,
            'masked_accuracy': masked_accuracy})
    model.pop()
    model.pop()
    return model 
開發者ID:bioinf-jku,項目名稱:FCD,代碼行數:29,代碼來源:FCD.py

示例9: contractive_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def contractive_loss(model, lam=1e-4):
    def loss(y_true, y_pred):
        ent_loss = K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)

        W = K.variable(value=model.encoder.get_weights()[0])  # N x N_hidden
        W = K.transpose(W)  # N_hidden x N
        h = model.encoder.output
        dh = h * (1 - h)  # N_batch x N_hidden

        # N_batch x N_hidden * N_hidden x 1 = N_batch x 1
        contractive = lam * K.sum(dh**2 * K.sum(W**2, axis=1), axis=1)

        return ent_loss + contractive
    return loss 
開發者ID:hugochan,項目名稱:KATE,代碼行數:16,代碼來源:keras_utils.py

示例10: weighted_binary_crossentropy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def weighted_binary_crossentropy(feature_weights):
    def loss(y_true, y_pred):
        # try:
        #     x = K.binary_crossentropy(y_pred, y_true)
        #     # y = tf.Variable(feature_weights.astype('float32'))
        #     # z = K.dot(x, y)
        #     y_true = tf.pow(y_true + 1e-5, .75)
        #     y2 = tf.div(y_true, tf.reshape(K.sum(y_true, 1), [-1, 1]))
        #     z = K.sum(tf.mul(x, y2), 1)
        # except Exception as e:
        #     print e
        #     import pdb;pdb.set_trace()
        # return z
        return K.dot(K.binary_crossentropy(y_pred, y_true), K.variable(feature_weights.astype('float32')))
    return loss 
開發者ID:hugochan,項目名稱:KATE,代碼行數:17,代碼來源:keras_utils.py

示例11: rpn_loss_cls

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def rpn_loss_cls(num_anchors):
	def rpn_loss_cls_fixed_num(y_true, y_pred):
		if K.image_dim_ordering() == 'tf':
			return lambda_rpn_class * K.sum(y_true[:, :, :, :num_anchors] * K.binary_crossentropy(y_true[:, :, :, num_anchors:],y_pred[:, :, :, :])) / K.sum(epsilon + y_true[:, :, :, :num_anchors])
		else:
			return lambda_rpn_class * K.sum(y_true[:, :num_anchors, :, :] * K.binary_crossentropy(y_true[:, num_anchors:, :, :],y_pred[:, :, :, :])) / K.sum(epsilon + y_true[:, :num_anchors, :, :])

	return rpn_loss_cls_fixed_num 
開發者ID:Abhijit-2592,項目名稱:Keras_object_detection,代碼行數:10,代碼來源:losses.py

示例12: mrcnn_mask_loss_graph

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks):
    '''Mask binary cross-entropy loss for the masks head.

    target_masks: [batch, num_rois, height, width].
        A float32 tensor of values 0 or 1. Uses zero padding to fill array.
    target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded.
    pred_masks: [batch, proposals, height, width, num_classes] float32 tensor
                with values from 0 to 1.
    '''
    # Reshape for simplicity. Merge first two dimensions into one.
    target_class_ids = K.reshape(target_class_ids, (-1,))
    mask_shape = tf.shape(target_masks)
    target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3]))
    pred_shape = tf.shape(pred_masks)
    pred_masks = K.reshape(pred_masks,
                           (-1, pred_shape[2], pred_shape[3], pred_shape[4]))
    # Permute predicted masks to [N, num_classes, height, width]
    pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2])

    # Only positive ROIs contribute to the loss. And only
    # the class specific mask of each ROI.
    positive_ix = tf.where(target_class_ids > 0)[:, 0]
    positive_class_ids = tf.cast(
        tf.gather(target_class_ids, positive_ix), tf.int64)
    indices = tf.stack([positive_ix, positive_class_ids], axis=1)

    # Gather the masks (predicted and true) that contribute to loss
    y_true = tf.gather(target_masks, positive_ix)
    y_pred = tf.gather_nd(pred_masks, indices)

    # Compute binary cross entropy. If no positive ROIs, then return 0.
    # shape: [batch, roi, num_classes]
    loss = K.switch(tf.size(y_true) > 0,
                    K.binary_crossentropy(target=y_true, output=y_pred),
                    tf.constant(0.0))
    loss = K.mean(loss)
    return loss 
開發者ID:nearthlab,項目名稱:image-segmentation,代碼行數:39,代碼來源:losses.py

示例13: head_mask_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def head_mask_loss(gt_masks, gt_labels, pred_masks):
    """マスクの損失関數

    gt_masks: 正解データ。
        マスクデータをbboxの領域のみ切り抜いてconfig.mask_out_shapeにリサイズしたデータ。
        [N, R, h, w]
        バイナリマスク
    gt_labels: 正解データのラベルID
        [N, R]
    pred_masks: 予測値
        バイナリマスク
        [N, R, n_labels h, w]
    ※h, w は config.mask_out_shape になる。
    """
    # Positiveなラベルが付與されているRoIのみ評価対象とする
    pos_idx = tf.where(gt_labels > 0)
    i = K.cast(pos_idx[:, 0], tf.int32)
    j = K.cast(pos_idx[:, 1], tf.int32)
    k = K.cast(tf.gather_nd(gt_labels, pos_idx), tf.int32)
    # i = log.tfprint(i, "i:head_mask_loss")
    # j = log.tfprint(j, "j:head_mask_loss")
    # k = log.tfprint(k, "k:head_mask_loss")
    pos_pred_idx = K.stack((i, j, k), axis=1)
    # pos_pred_idx = log.tfprint(pos_pred_idx, "pos_pred_idx:head_mask_loss")
    pred_masks = tf.gather_nd(pred_masks, pos_pred_idx)
    gt_masks = tf.gather_nd(gt_masks, pos_idx)

    loss = K.switch(tf.size(gt_masks) > 0,
                    K.binary_crossentropy(gt_masks, pred_masks),
                    tf.constant(0.0))
    loss = K.mean(loss)
    loss = log.tfprint(loss, "head_mask_loss")
    return loss 
開發者ID:shtamura,項目名稱:maskrcnn,代碼行數:35,代碼來源:loss.py

示例14: hard_mining_entropy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def hard_mining_entropy(k):
    """
    Compute binary cross-entropy for collision evaluation and hard-mining.

    # Arguments
        k: Number of samples for hard-mining.

    # Returns
        custom_bin_crossentropy: average binary cross-entropy for the current batch.
    """

    def custom_bin_crossentropy(y_true, y_pred):
        # Parameter t indicates the type of experiment
        t = y_true[:,0]

        # Number of collision samples
        samples_coll = tf.cast(tf.equal(t,0), tf.int32)
        n_samples_coll = tf.reduce_sum(samples_coll)

        if n_samples_coll == 0:
            return 0.0
        else:
            # Predicted and real labels
            pred_coll = tf.squeeze(y_pred, squeeze_dims=-1)
            true_coll = y_true[:,1]

            # Collision loss
            l_coll = tf.multiply((1-t), K.binary_crossentropy(true_coll, pred_coll))

            # Hard mining
            k_min = tf.minimum(k, n_samples_coll)
            _, indices = tf.nn.top_k(l_coll, k=k_min)
            max_l_coll = tf.gather(l_coll, indices)
            hard_l_coll = tf.divide(tf.reduce_sum(max_l_coll), tf.cast(k, tf.float32))

            return hard_l_coll

    return custom_bin_crossentropy 
開發者ID:uzh-rpg,項目名稱:rpg_public_dronet,代碼行數:40,代碼來源:utils.py

示例15: rpn_loss_cls

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import binary_crossentropy [as 別名]
def rpn_loss_cls(num_anchors):
	def rpn_loss_cls_fixed_num(y_true, y_pred):
		return lambda_rpn_class * K.sum(y_true[:, :num_anchors, :, :] * K.binary_crossentropy(y_pred[:, :, :, :], y_true[:, num_anchors:, :, :])) / 256.0
	return rpn_loss_cls_fixed_num 
開發者ID:small-yellow-duck,項目名稱:keras-frcnn,代碼行數:6,代碼來源:losses.py


注:本文中的keras.backend.binary_crossentropy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。