當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.bias_add方法代碼示例

本文整理匯總了Python中keras.backend.bias_add方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.bias_add方法的具體用法?Python backend.bias_add怎麽用?Python backend.bias_add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.bias_add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs):

        if self.data_format is None:
            data_format = image_data_format()
        if self.data_format not in {'channels_first', 'channels_last'}:
            raise ValueError('Unknown data_format ' + str(data_format))

        x = _preprocess_conv2d_input(inputs, self.data_format)
        padding = _preprocess_padding(self.padding)
        strides = (1,) + self.strides + (1,)

        outputs = tf.nn.depthwise_conv2d(inputs, self.depthwise_kernel,
                                         strides=strides,
                                         padding=padding,
                                         rate=self.dilation_rate)

        if self.bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:rcmalli,項目名稱:keras-mobilenet,代碼行數:27,代碼來源:depthwise_conv2d.py

示例2: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs, training=None):
        outputs = K.depthwise_conv2d(
            inputs,
            self.depthwise_kernel,
            strides=self.strides,
            padding=self.padding,
            dilation_rate=self.dilation_rate,
            data_format=self.data_format)

        if self.bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)

        return outputs 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:21,代碼來源:mobile_net_fixed.py

示例3: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs, training=None):
        outputs = K.depthwise_conv2d(
            inputs,
            self.depthwise_kernel,
            strides=self.strides,
            padding=self.padding,
            dilation_rate=self.dilation_rate,
            data_format=self.data_format)

        if self.bias:
            outputs = K.bias_add(
                outputs, self.bias, data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)

        return outputs 
開發者ID:junhwanjang,項目名稱:face_landmark_dnn,代碼行數:19,代碼來源:train_mobilenets.py

示例4: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs, training=None):
        outputs = depthwise_conv2d(
            inputs,
            self.depthwise_kernel,
            strides=self.strides,
            padding=self.padding,
            dilation_rate=self.dilation_rate,
            data_format=self.data_format)

        if self.bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)

        return outputs 
開發者ID:titu1994,項目名稱:keras-squeeze-excite-network,代碼行數:21,代碼來源:se_mobilenets.py

示例5: preprocess_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def preprocess_input(self, inputs, training=None):
        if self.window_size > 1:
            inputs = K.temporal_padding(inputs, (self.window_size - 1, 0))
        inputs = K.expand_dims(inputs, 2)  # add a dummy dimension

        output = K.conv2d(inputs, self.kernel, strides=self.strides,
                          padding='valid',
                          data_format='channels_last')
        output = K.squeeze(output, 2)  # remove the dummy dimension
        if self.use_bias:
            output = K.bias_add(output, self.bias, data_format='channels_last')

        if self.dropout is not None and 0. < self.dropout < 1.:
            z = output[:, :, :self.units]
            f = output[:, :, self.units:2 * self.units]
            o = output[:, :, 2 * self.units:]
            f = K.in_train_phase(1 - _dropout(1 - f, self.dropout), f, training=training)
            return K.concatenate([z, f, o], -1)
        else:
            return output 
開發者ID:amansrivastava17,項目名稱:embedding-as-service,代碼行數:22,代碼來源:qrnn.py

示例6: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, x, mask=None):
        # MLP
        ut = K.dot(x, self.kernel)
        if self.use_bias:
            ut = K.bias_add(ut, self.bias)
        if self.activation:
            ut = K.tanh(ut)
        if self.context_kernel:
            ut = K.dot(ut, self.context_kernel)
        ut = K.squeeze(ut, axis=-1)
        # softmax
        at = K.exp(ut - K.max(ut, axis=-1, keepdims=True))
        if mask is not None:
            at *= K.cast(mask, K.floatx())
        att_weights = at / (K.sum(at, axis=1, keepdims=True) + K.epsilon())
        # output
        atx = x * K.expand_dims(att_weights, axis=-1)
        output = K.sum(atx, axis=1)
        if self.return_attention:
            return [output, att_weights]
        return output 
開發者ID:stevewyl,項目名稱:nlp_toolkit,代碼行數:23,代碼來源:attention.py

示例7: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs):
        binary_kernel = binarize(self.kernel, H=self.H) 
        outputs = K.conv2d(
            inputs,
            binary_kernel,
            strides=self.strides,
            padding=self.padding,
            data_format=self.data_format,
            dilation_rate=self.dilation_rate)

        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:21,代碼來源:binary_layers.py

示例8: preprocess_input

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def preprocess_input(self, inputs, training=None):
        if self.window_size > 1:
            inputs = K.temporal_padding(inputs, (self.window_size-1, 0))
        inputs = K.expand_dims(inputs, 2)  # add a dummy dimension

        output = K.conv2d(inputs, self.kernel, strides=self.strides,
                          padding='valid',
                          data_format='channels_last')
        output = K.squeeze(output, 2)  # remove the dummy dimension
        if self.use_bias:
            output = K.bias_add(output, self.bias, data_format='channels_last')

        if self.dropout is not None and 0. < self.dropout < 1.:
            z = output[:, :, :self.units]
            f = output[:, :, self.units:2 * self.units]
            o = output[:, :, 2 * self.units:]
            f = K.in_train_phase(1 - _dropout(1 - f, self.dropout), f, training=training)
            return K.concatenate([z, f, o], -1)
        else:
            return output 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:22,代碼來源:qrnn.py

示例9: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs):
        if self.data_format == 'channels_first':
            sq = K.mean(inputs, [2, 3])
        else:
            sq = K.mean(inputs, [1, 2])

        ex = K.dot(sq, self.kernel1)
        if self.use_bias:
            ex = K.bias_add(ex, self.bias1)
        ex= K.relu(ex)

        ex = K.dot(ex, self.kernel2)
        if self.use_bias:
            ex = K.bias_add(ex, self.bias2)
        ex= K.sigmoid(ex)

        if self.data_format == 'channels_first':
            ex = K.expand_dims(ex, -1)
            ex = K.expand_dims(ex, -1)
        else:
            ex = K.expand_dims(ex, 1)
            ex = K.expand_dims(ex, 1)

        return inputs * ex 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:26,代碼來源:layers.py

示例10: step

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def step(self, x, states):
        h_tm1 = states[0]
        c_tm1 = states[1]
        B_U = states[2]
        B_W = states[3]

        z = LN(K.dot(x * B_W[0], self.kernel), self.gamma_1, self.beta_1) +  \
            LN(K.dot(h_tm1 * B_U[0], self.recurrent_kernel), self.gamma_2, self.beta_2)
        if self.use_bias:
            z = K.bias_add(z, self.bias)

        z0 = z[:, :self.units]
        z1 = z[:, self.units: 2 * self.units]
        z2 = z[:, 2 * self.units: 3 * self.units]
        z3 = z[:, 3 * self.units:]

        i = self.recurrent_activation(z0)
        f = self.recurrent_activation(z1)
        c = f * c_tm1 + i * self.activation(z2)
        o = self.recurrent_activation(z3)

        h = o * self.activation(LN(c, self.gamma_3, self.beta_3))
        return h, [h, c] 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:25,代碼來源:layer_norm_layers.py

示例11: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs):
        ternary_kernel = ternarize(self.kernel, H=self.H) 
        outputs = K.conv2d(
            inputs,
            ternary_kernel,
            strides=self.strides,
            padding=self.padding,
            data_format=self.data_format,
            dilation_rate=self.dilation_rate)

        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:21,代碼來源:ternary_layers.py

示例12: step

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def step(self, inputs, states):
        if 0 < self.dropout < 1:
            h = ternarize_dot(inputs * states[1], self.kernel)
        else:
            h = ternarize_dot(inputs, self.kernel)
        if self.bias is not None:
            h = K.bias_add(h, self.bias)

        prev_output = states[0]
        if 0 < self.recurrent_dropout < 1:
            prev_output *= states[2]
        output = h + ternarize_dot(prev_output, self.recurrent_kernel)
        if self.activation is not None:
            output = self.activation(output)

        # Properly set learning phase on output tensor.
        if 0 < self.dropout + self.recurrent_dropout:
            output._uses_learning_phase = True
        return output, [output] 
開發者ID:DingKe,項目名稱:nn_playground,代碼行數:21,代碼來源:ternary_layers.py

示例13: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs):
        if self.rank == 2:
            outputs = K.conv2d(
                inputs,
                self.kernel*self.mask, ### add mask multiplication
                strides=self.strides,
                padding=self.padding,
                data_format=self.data_format,
                dilation_rate=self.dilation_rate)
        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:csm9493,項目名稱:FC-AIDE-Keras,代碼行數:20,代碼來源:layers.py

示例14: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs, **kwargs):
        outputs = K.conv2d(
            inputs,
            self.kernel,
            strides=self.strides,
            padding=self.padding,
            data_format=self.data_format,
            dilation_rate=self.dilation_rate)
        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)
        outputs = BatchNormalization(momentum=self.momentum)(outputs)
        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:PavlosMelissinos,項目名稱:enet-keras,代碼行數:19,代碼來源:core.py

示例15: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import bias_add [as 別名]
def call(self, inputs):

        expert_outputs = tf.tensordot(inputs, self.expert_kernel, axes=1)
        if self.use_expert_bias:
            expert_outputs = K.bias_add(expert_outputs, self.expert_bias)
        if self.expert_activation is not None:
            expert_outputs = self.expert_activation(expert_outputs)

        gating_outputs = K.dot(inputs, self.gating_kernel)
        if self.use_gating_bias:
            gating_outputs = K.bias_add(gating_outputs, self.gating_bias)
        if self.gating_activation is not None:
            gating_outputs = self.gating_activation(gating_outputs)

        output = K.sum(expert_outputs * K.repeat_elements(K.expand_dims(gating_outputs, axis=1), self.units, axis=1), axis=2)

        return output 
開發者ID:eminorhan,項目名稱:mixture-of-experts,代碼行數:19,代碼來源:DenseMoE.py


注:本文中的keras.backend.bias_add方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。