本文整理匯總了Python中keras.backend.batch_flatten方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.batch_flatten方法的具體用法?Python backend.batch_flatten怎麽用?Python backend.batch_flatten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.backend
的用法示例。
在下文中一共展示了backend.batch_flatten方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: discriminator_dummy
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def discriminator_dummy(img_size, n_filters, init_lr, name='d'): # naive unet without GAN
# set image specifics
img_ch=3 # image channels
out_ch=1 # output channel
img_height, img_width = img_size[0], img_size[1]
inputs = Input((img_height, img_width, img_ch + out_ch))
d = Model(inputs, inputs, name=name)
def d_loss(y_true, y_pred):
L = objectives.binary_crossentropy(K.batch_flatten(y_true),
K.batch_flatten(y_pred))
# L = objectives.mean_squared_error(K.batch_flatten(y_true),
# K.batch_flatten(y_pred))
return L
d.compile(optimizer=Adam(lr=init_lr, beta_1=0.5), loss=d_loss, metrics=['accuracy'])
return d, d.layers[-1].output_shape[1:]
示例2: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def call(self, inputs, **kwargs):
if type(inputs) is list: # true label is provided with shape = [None, n_classes], i.e. one-hot code.
assert len(inputs) == 2
inputs, mask = inputs
else: # if no true label, mask by the max length of capsules. Mainly used for prediction
# compute lengths of capsules
x = K.sqrt(K.sum(K.square(inputs), -1))
# generate the mask which is a one-hot code.
# mask.shape=[None, n_classes]=[None, num_capsule]
mask = K.one_hot(indices=K.argmax(x, 1), num_classes=x.get_shape().as_list()[1])
# inputs.shape=[None, num_capsule, dim_capsule]
# mask.shape=[None, num_capsule]
# masked.shape=[None, num_capsule * dim_capsule]
masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))
return masked
示例3: gram_matrix
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def gram_matrix(x):
"""
Computes the outer-product of the input tensor x.
Input
-----
- x: input tensor of shape (C x H x W)
Returns
-------
- x . x^T
Note that this can be computed efficiently if x is reshaped
as a tensor of shape (C x H*W).
"""
# assert K.ndim(x) == 3
if K.image_dim_ordering() == 'th':
features = K.batch_flatten(x)
else:
features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
return K.dot(features, K.transpose(features))
示例4: nss
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def nss(y_true, y_pred):
max_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(y_pred, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_pred /= max_y_pred
y_pred_flatten = K.batch_flatten(y_pred)
y_mean = K.mean(y_pred_flatten, axis=-1)
y_mean = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.expand_dims(y_mean)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_std = K.std(y_pred_flatten, axis=-1)
y_std = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.expand_dims(y_std)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_pred = (y_pred - y_mean) / (y_std + K.epsilon())
return -(K.sum(K.sum(y_true * y_pred, axis=2), axis=2) / K.sum(K.sum(y_true, axis=2), axis=2))
# Gaussian priors initialization
示例5: step
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def step(self, x, states):
x_shape = K.shape(x)
h_tm1 = states[0]
c_tm1 = states[1]
e = self.V_a(K.tanh(self.W_a(h_tm1) + self.U_a(x)))
a = K.reshape(K.softmax(K.batch_flatten(e)), (x_shape[0], 1, x_shape[2], x_shape[3]))
x_tilde = x * K.repeat_elements(a, x_shape[1], 1)
x_i = self.W_i(x_tilde)
x_f = self.W_f(x_tilde)
x_c = self.W_c(x_tilde)
x_o = self.W_o(x_tilde)
i = self.inner_activation(x_i + self.U_i(h_tm1))
f = self.inner_activation(x_f + self.U_f(h_tm1))
c = f * c_tm1 + i * self.activation(x_c + self.U_c(h_tm1))
o = self.inner_activation(x_o + self.U_o(h_tm1))
h = o * self.activation(c)
return h, [h, c]
示例6: get_initial_states
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def get_initial_states(self, nse_input, input_mask=None):
'''
This method produces the 'read' mask for all timesteps
and initializes the memory slot mem_0.
Input: nse_input (batch_size, input_length, input_dim)
Output: list[Tensors]:
h_0 (batch_size, output_dim)
c_0 (batch_size, output_dim)
flattened_mem_0 (batch_size, input_length * output_dim)
While this method simply copies input to mem_0, variants that inherit from this class can do
something fancier.
'''
input_to_read = nse_input
mem_0 = input_to_read
flattened_mem_0 = K.batch_flatten(mem_0)
initial_states = self.reader.get_initial_states(nse_input)
initial_states += [flattened_mem_0]
return initial_states
示例7: step
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def step(self, inputs, states):
vP_t = inputs
hP_tm1 = states[0]
_ = states[1:3] # ignore internal dropout/masks
vP, WP_v, WPP_v, v, W_g2 = states[3:8]
vP_mask, = states[8:]
WP_v_Dot = K.dot(vP, WP_v)
WPP_v_Dot = K.dot(K.expand_dims(vP_t, axis=1), WPP_v)
s_t_hat = K.tanh(WPP_v_Dot + WP_v_Dot)
s_t = K.dot(s_t_hat, v)
s_t = K.batch_flatten(s_t)
a_t = softmax(s_t, mask=vP_mask, axis=1)
c_t = K.batch_dot(a_t, vP, axes=[1, 1])
GRU_inputs = K.concatenate([vP_t, c_t])
g = K.sigmoid(K.dot(GRU_inputs, W_g2))
GRU_inputs = g * GRU_inputs
hP_t, s = super(SelfAttnGRU, self).step(GRU_inputs, states)
return hP_t, s
示例8: step
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def step(self, inputs, states):
# input
ha_tm1 = states[0] # (B, 2H)
_ = states[1:3] # ignore internal dropout/masks
hP, WP_h, Wa_h, v = states[3:7] # (B, P, 2H)
hP_mask, = states[7:8]
WP_h_Dot = K.dot(hP, WP_h) # (B, P, H)
Wa_h_Dot = K.dot(K.expand_dims(ha_tm1, axis=1), Wa_h) # (B, 1, H)
s_t_hat = K.tanh(WP_h_Dot + Wa_h_Dot) # (B, P, H)
s_t = K.dot(s_t_hat, v) # (B, P, 1)
s_t = K.batch_flatten(s_t) # (B, P)
a_t = softmax(s_t, mask=hP_mask, axis=1) # (B, P)
c_t = K.batch_dot(hP, a_t, axes=[1, 1]) # (B, 2H)
GRU_inputs = c_t
ha_t, (ha_t_,) = super(PointerGRU, self).step(GRU_inputs, states)
return a_t, [ha_t]
示例9: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def call(self, inputs, mask=None):
assert(isinstance(inputs, list) and len(inputs) == 5)
uQ, WQ_u, WQ_v, v, VQ_r = inputs
uQ_mask = mask[0] if mask is not None else None
ones = K.ones_like(K.sum(uQ, axis=1, keepdims=True)) # (B, 1, 2H)
s_hat = K.dot(uQ, WQ_u)
s_hat += K.dot(ones, K.dot(WQ_v, VQ_r))
s_hat = K.tanh(s_hat)
s = K.dot(s_hat, v)
s = K.batch_flatten(s)
a = softmax(s, mask=uQ_mask, axis=1)
rQ = K.batch_dot(uQ, a, axes=[1, 1])
return rQ
示例10: step
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def step(self, inputs, states):
uP_t = inputs
vP_tm1 = states[0]
_ = states[1:3] # ignore internal dropout/masks
uQ, WQ_u, WP_v, WP_u, v, W_g1 = states[3:9]
uQ_mask, = states[9:10]
WQ_u_Dot = K.dot(uQ, WQ_u) #WQ_u
WP_v_Dot = K.dot(K.expand_dims(vP_tm1, axis=1), WP_v) #WP_v
WP_u_Dot = K.dot(K.expand_dims(uP_t, axis=1), WP_u) # WP_u
s_t_hat = K.tanh(WQ_u_Dot + WP_v_Dot + WP_u_Dot)
s_t = K.dot(s_t_hat, v) # v
s_t = K.batch_flatten(s_t)
a_t = softmax(s_t, mask=uQ_mask, axis=1)
c_t = K.batch_dot(a_t, uQ, axes=[1, 1])
GRU_inputs = K.concatenate([uP_t, c_t])
g = K.sigmoid(K.dot(GRU_inputs, W_g1)) # W_g1
GRU_inputs = g * GRU_inputs
vP_t, s = super(QuestionAttnGRU, self).step(GRU_inputs, states)
return vP_t, s
示例11: call
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def call(self, inputs, **kwargs):
if isinstance(inputs, list): # true label is provided with shape = [None, n_classes], i.e. one-hot code.
assert len(inputs) == 2
inputs, mask = inputs
else: # if no true label, mask by the max length of capsules. Mainly used for prediction
# compute lengths of capsules
x = K.sqrt(K.sum(K.square(inputs), -1))
# generate the mask which is a one-hot code.
# mask.shape=[None, n_classes]=[None, num_capsule]
mask = K.one_hot(indices=K.argmax(x, 1), num_classes=x.get_shape().as_list()[1])
# inputs.shape=[None, num_capsule, dim_capsule]
# mask.shape=[None, num_capsule]
# masked.shape=[None, num_capsule * dim_capsule]
masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))
return masked
示例12: lap1_diff
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def lap1_diff(laplacian, frame_step=1):
''' Model which takes the lap-1 distance between frames `frame_step` apart
in the batch '''
deltas = []
for i, lap_level in enumerate(laplacian):
# Take the difference of the Laplacian pyramid of this layer vs. the next
diff = Lambda(lambda lap_level, frame_step=frame_step:
K.batch_flatten(
lap_level - K.concatenate([lap_level[frame_step:], lap_level[0:frame_step]], axis=0)))(lap_level)
# scale for good measure
diff = Lambda(lambda x, scale = 2.**-(i-1): scale*x)(diff)
#diff = K.batch_flatten(lap_layer - K.concatenate([lap_layer[frame_step:], lap_layer[0:frame_step]], axis=0))
deltas.append(diff) # diff: (frames, lap-pixels)
out = keras.layers.concatenate(deltas, axis=1) # (frames, lap-pixels)
# I use mean here instead of sum to make it more agnostic to total pixel count.
out = Lambda(lambda x: K.mean(K.abs(x), axis=1))(out) # (frames,)
return out
示例13: l2_diff
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def l2_diff(octaves, frame_step=1):
''' Model which takes the l2 distance between frames frame_step apart'''
octave_diffs = []
for frames in octaves:
# Take the difference between the frames
out = Lambda(lambda frames, frame_step=frame_step:
K.batch_flatten(frames - K.concatenate([frames[frame_step:], frames[0:frame_step]], axis=0)))(frames)
# square
out = Lambda(lambda x: K.square(x), name=make_name("l2_diff_square"))(out)
# mean instead of sum so we can ignore pixel count
out = Lambda(lambda x: K.mean(x, axis=1), name=make_name("l2_diff_mean"))(out)
# sqrt
out = Lambda(lambda x: K.sqrt(x), name=make_name("l2_diff_sqrt"))(out)
# (frames,) list of l2 distances
octave_diffs.append(out)
return octave_diffs # [(frames, ) ...] list of lists of l2 distances
示例14: read
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def read(self, nse_input, input_mask=None):
'''
This method produces the 'read' output (equation 1 in the paper) for all timesteps
and initializes the memory slot mem_0.
Input: nse_input (batch_size, input_length, input_dim)
Outputs:
o (batch_size, input_length, output_dim)
flattened_mem_0 (batch_size, input_length * output_dim)
While this method simply copies input to mem_0, variants that inherit from this class can do
something fancier.
'''
input_to_read = nse_input
mem_0 = input_to_read
flattened_mem_0 = K.batch_flatten(mem_0)
o = self.reader.call(input_to_read, input_mask)
o_mask = self.reader.compute_mask(input_to_read, input_mask)
return o, [flattened_mem_0], o_mask
示例15: compose_and_write_step
# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import batch_flatten [as 別名]
def compose_and_write_step(self, o_t, states):
flattened_mem_tm1, flattened_shared_mem_tm1, writer_h_tm1, writer_c_tm1 = states
input_mem_shape = K.shape(flattened_mem_tm1)
mem_shape = (input_mem_shape[0], input_mem_shape[1]/self.output_dim, self.output_dim)
mem_tm1 = K.reshape(flattened_mem_tm1, mem_shape)
shared_mem_tm1 = K.reshape(flattened_shared_mem_tm1, mem_shape)
z_t, m_rt = self.summarize_memory(o_t, mem_tm1)
shared_z_t, shared_m_rt = self.summarize_memory(o_t, shared_mem_tm1)
c_t = self.compose_memory_and_output([o_t, m_rt, shared_m_rt])
# Collecting the necessary variables to directly call writer's step function.
writer_constants = self.writer.get_constants(c_t) # returns dropouts for W and U (all 1s, see init)
writer_states = [writer_h_tm1, writer_c_tm1] + writer_constants
# Making a call to writer's step function, Equation 5
h_t, [_, writer_c_t] = self.writer.step(c_t, writer_states) # h_t, writer_c_t: (batch_size, output_dim)
mem_t = self.update_memory(z_t, h_t, mem_tm1)
shared_mem_t = self.update_memory(shared_z_t, h_t, shared_mem_tm1)
return h_t, [K.batch_flatten(mem_t), K.batch_flatten(shared_mem_t), h_t, writer_c_t]