當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.argmax方法代碼示例

本文整理匯總了Python中keras.backend.argmax方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.argmax方法的具體用法?Python backend.argmax怎麽用?Python backend.argmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.argmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: yolo_filter_boxes

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = .6):    
    # Compute box scores
    box_scores = box_confidence * box_class_probs
    
    # Find the box_classes thanks to the max box_scores, keep track of the corresponding score
    box_classes = K.argmax(box_scores, axis=-1)
    box_class_scores = K.max(box_scores, axis=-1, keepdims=False)
    
    # Create a filtering mask based on "box_class_scores" by using "threshold". The mask should have the
    # same dimension as box_class_scores, and be True for the boxes you want to keep (with probability >= threshold)
    filtering_mask = box_class_scores >= threshold
    
    # Apply the mask to scores, boxes and classes
    scores = tf.boolean_mask(box_class_scores, filtering_mask)
    boxes = tf.boolean_mask(boxes, filtering_mask)
    classes = tf.boolean_mask(box_classes, filtering_mask)
    
    return scores, boxes, classes 
開發者ID:kaka-lin,項目名稱:object-detection,代碼行數:20,代碼來源:test_tiny_yolo.py

示例2: compute_error_matrix

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def compute_error_matrix(y_true, y_pred):
    """Compute Confusion matrix (a.k.a. error matrix).

    a       predicted
    c       0   1   2
    t  0 [[ 5,  3,  0],
    u  1  [ 2,  3,  1],
    a  2  [ 0,  2, 11]]
    l

    Note true positves are in diagonal
    """
    # Find channel axis given backend
    if K.image_data_format() == 'channels_last':
        ax_chn = 3
    else:
        ax_chn = 1
    classes = y_true.shape[ax_chn]
    confusion = get_confusion(K.argmax(y_true, axis=ax_chn).flatten(),
                              K.argmax(y_pred, axis=ax_chn).flatten(),
                              classes)
    return confusion 
開發者ID:JihongJu,項目名稱:keras-fcn,代碼行數:24,代碼來源:score.py

示例3: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def call(self, inputs, **kwargs):
        if type(inputs) is list:  # true label is provided with shape = [None, n_classes], i.e. one-hot code.
            assert len(inputs) == 2
            inputs, mask = inputs
        else:  # if no true label, mask by the max length of capsules. Mainly used for prediction
            # compute lengths of capsules
            x = K.sqrt(K.sum(K.square(inputs), -1))
            # generate the mask which is a one-hot code.
            # mask.shape=[None, n_classes]=[None, num_capsule]
            mask = K.one_hot(indices=K.argmax(x, 1), num_classes=x.get_shape().as_list()[1])

        # inputs.shape=[None, num_capsule, dim_capsule]
        # mask.shape=[None, num_capsule]
        # masked.shape=[None, num_capsule * dim_capsule]
        masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))
        return masked 
開發者ID:ssrp,項目名稱:Multi-level-DCNet,代碼行數:18,代碼來源:capsulelayers.py

示例4: labelembed_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def labelembed_loss(out1, out2, tar, targets, tau = 2., alpha = 0.9, beta = 0.5, num_classes = 100):
    
    out2_prob = K.softmax(out2)
    tau2_prob = K.stop_gradient(K.softmax(out2 / tau))
    soft_tar = K.stop_gradient(K.softmax(tar))
    
    L_o1_y = K.sparse_categorical_crossentropy(output = K.softmax(out1), target = targets)
    
    pred = K.argmax(out2, axis = -1)
    mask = K.stop_gradient(K.cast(K.equal(pred, K.cast(targets, 'int64')), K.floatx()))
    L_o1_emb = -cross_entropy(out1, soft_tar)  # pylint: disable=invalid-unary-operand-type
    
    L_o2_y = K.sparse_categorical_crossentropy(output = out2_prob, target = targets)
    L_emb_o2 = -cross_entropy(tar, tau2_prob) * mask * (K.cast(K.shape(mask)[0], K.floatx())/(K.sum(mask)+1e-8))  # pylint: disable=invalid-unary-operand-type
    L_re = K.relu(K.sum(out2_prob * K.one_hot(K.cast(targets, 'int64'), num_classes), axis = -1) - alpha)
    
    return beta * L_o1_y + (1-beta) * L_o1_emb + L_o2_y + L_emb_o2 + L_re 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:19,代碼來源:learn_labelembedding.py

示例5: count

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def count(audio, model, scaler):
    # compute STFT
    X = np.abs(librosa.stft(audio, n_fft=400, hop_length=160)).T

    # apply global (featurewise) standardization to mean1, var0
    X = scaler.transform(X)

    # cut to input shape length (500 frames x 201 STFT bins)
    X = X[:500, :]

    # apply l2 normalization
    Theta = np.linalg.norm(X, axis=1) + eps
    X /= np.mean(Theta)

    # add sample dimension
    X = X[np.newaxis, ...]

    if len(model.input_shape) == 4:
        X = X[:, np.newaxis, ...]

    ys = model.predict(X, verbose=0)
    return np.argmax(ys, axis=1)[0] 
開發者ID:faroit,項目名稱:CountNet,代碼行數:24,代碼來源:predict.py

示例6: f1_score_keras

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def f1_score_keras(y_true, y_pred):
    #convert probas to 0,1
    y_ppred = K.zeros_like(y_true)
    y_pred_ones = K.T.set_subtensor(y_ppred[K.T.arange(y_true.shape[0]), K.argmax(y_pred, axis=-1)], 1)

    #where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true*y_pred_ones, axis=0)

    #for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    #for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    #precision for each class
    precision = K.T.switch(K.T.eq(pred_cnt, 0), 0, y_true_pred/pred_cnt)

    #recall for each class
    recall = K.T.switch(K.T.eq(gold_cnt, 0), 0, y_true_pred/gold_cnt)

    #f1 for each class
    f1_class = K.T.switch(K.T.eq(precision + recall, 0), 0, 2*(precision*recall)/(precision+recall))

    #return average f1 score over all classes
    return K.mean(f1_class) 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:27,代碼來源:evaluation_metrics_theano.py

示例7: f1_score_taskB

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def f1_score_taskB(y_true, y_pred):
    #convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    #where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true*y_pred_ones, axis=0)

    #for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    #for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    #precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt)

    #recall for each class
    recall = K.switch(K.equal(gold_cnt, 0), 0, y_true_pred/gold_cnt)

    #f1 for each class
    f1_class = K.switch(K.equal(precision + recall, 0), 0, 2*(precision*recall)/(precision+recall))

    #return average f1 score over all classes
    return f1_class 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:27,代碼來源:evaluation_metrics_theano.py

示例8: f1_score_semeval

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def f1_score_semeval(y_true, y_pred):
    # convert probas to 0,1
    y_ppred = K.zeros_like(y_true)
    y_pred_ones = K.T.set_subtensor(y_ppred[K.T.arange(y_true.shape[0]), K.argmax(y_pred, axis=-1)], 1)

    # where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true * y_pred_ones, axis=0)

    # for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    # for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    # precision for each class
    precision = K.T.switch(K.T.eq(pred_cnt, 0), 0, y_true_pred / pred_cnt)

    # recall for each class
    recall = K.T.switch(K.T.eq(gold_cnt, 0), 0, y_true_pred / gold_cnt)

    # f1 for each class
    f1_class = K.T.switch(K.T.eq(precision + recall, 0), 0, 2 * (precision * recall) / (precision + recall))

    #return average f1 score over all classes
    return (f1_class[0] + f1_class[2])/2.0 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:27,代碼來源:evaluation_metrics_theano.py

示例9: precision_keras

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def precision_keras(y_true, y_pred):
    #convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    #where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true*y_pred_ones, axis=0)

    #for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    #precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt)
    
    #return average f1 score over all classes
    return K.mean(precision) 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:18,代碼來源:evaluation_metrics_theano.py

示例10: f1_score_task3

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def f1_score_task3(y_true, y_pred):
    #convert probas to 0,1
    y_ppred = K.zeros_like(y_true)
    y_pred_ones = K.T.set_subtensor(y_ppred[K.T.arange(y_true.shape[0]), K.argmax(y_pred, axis=-1)], 1)

    #where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true*y_pred_ones, axis=0)

    #for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    #for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    #precision for each class
    precision = K.T.switch(K.T.eq(pred_cnt, 0), 0, y_true_pred/pred_cnt)

    #recall for each class
    recall = K.T.switch(K.T.eq(gold_cnt, 0), 0, y_true_pred/gold_cnt)

    #f1 for each class
    f1_class = K.T.switch(K.T.eq(precision + recall, 0), 0, 2*(precision*recall)/(precision+recall))

    #return average f1 score over all classes
    return f1_class[1] 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:27,代碼來源:evaluation_metrics_theano.py

示例11: f1_score_taskB

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def f1_score_taskB(y_true, y_pred):
    # convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    # where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true * y_pred_ones, axis=0)

    # for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    # for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    # precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred / pred_cnt)

    # recall for each class
    recall = K.switch(K.equal(gold_cnt, 0), 0, y_true_pred / gold_cnt)

    # f1 for each class
    f1_class = K.switch(K.equal(precision + recall, 0), 0, 2 * (precision * recall) / (precision + recall))

    # return average f1 score over all classes
    return f1_class 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:27,代碼來源:evaluation_metrics_tf.py

示例12: precision_keras

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def precision_keras(y_true, y_pred):
    # convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    # where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true * y_pred_ones, axis=0)

    # for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    # precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred / pred_cnt)

    # return average f1 score over all classes
    return K.mean(precision) 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:18,代碼來源:evaluation_metrics_tf.py

示例13: get_sample_weight

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def get_sample_weight(label, whole_set):
	if label.ndim < 3: # in case output_size==1
		return None
	ret = []
	for i in label:
		ret.append([])
		tag = False
		for j in i:
			cha = whole_set[np.argmax(j)]
			weight = 0
			if cha == 'empty' and tag == False:
				weight = 1 # TODO
				tag = True 
			if cha != 'empty':
				weight = 1
			ret[-1].append(weight)
	ret = np.asarray(ret)
	return ret 
開發者ID:xingjian-f,項目名稱:DeepLearning-OCR,代碼行數:20,代碼來源:util.py

示例14: _get_accuracy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def _get_accuracy(y_true, y_pred, mask, sparse_target=False):
    """
    :param y_true: 
    :param y_pred: 
    :param mask: 
    :param sparse_target: 
    :return: 
    """
    y_pred = K.argmax(y_pred, -1)
    if sparse_target:
        y_true = K.cast(y_true[:, :, 0], K.dtype(y_pred))
    else:
        y_true = K.argmax(y_true, -1)
    judge = K.cast(K.equal(y_pred, y_true), K.floatx())
    if mask is None:
        return K.mean(judge)
    else:
        mask = K.cast(mask, K.floatx())
        return K.sum(judge * mask) / K.sum(mask) 
開發者ID:yongzhuo,項目名稱:nlp_xiaojiang,代碼行數:21,代碼來源:keras_bert_layer.py

示例15: augmented_loss

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import argmax [as 別名]
def augmented_loss(self, y_true, y_pred):
        _y_pred = Activation("softmax")(y_pred)
        loss = K.categorical_crossentropy(_y_pred, y_true)

        # y is (batch x seq x vocab)
        y_indexes = K.argmax(y_true, axis=2)  # turn one hot to index. (batch x seq)
        y_vectors = self.embedding(y_indexes)  # lookup the vector (batch x seq x vector_length)

        #v_length = self.setting.vector_length
        #y_vectors = K.reshape(y_vectors, (-1, v_length))
        #y_t = K.map_fn(lambda v: K.dot(self.embedding.embeddings, K.reshape(v, (-1, 1))), y_vectors)
        #y_t = K.squeeze(y_t, axis=2)  # unknown but necessary operation
        #y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size))

        # vector x embedding dot products (batch x seq x vocab)
        y_t = tf.tensordot(y_vectors, K.transpose(self.embedding.embeddings), 1)
        y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size))  # explicitly set shape
        y_t = K.softmax(y_t / self.temperature)
        _y_pred_t = Activation("softmax")(y_pred / self.temperature)
        aug_loss = kullback_leibler_divergence(y_t, _y_pred_t)
        loss += (self.gamma * self.temperature) * aug_loss
        return loss 
開發者ID:icoxfog417,項目名稱:tying-wv-and-wc,代碼行數:24,代碼來源:augmented_model.py


注:本文中的keras.backend.argmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。