當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.any方法代碼示例

本文整理匯總了Python中keras.backend.any方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.any方法的具體用法?Python backend.any怎麽用?Python backend.any使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.backend的用法示例。


在下文中一共展示了backend.any方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_energy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def get_energy(self, y_true, input_energy, mask):
        """Energy = a1' y1 + u1' y1 + y1' U y2 + u2' y2 + y2' U y3 + u3' y3 + an' y3
        """
        input_energy = K.sum(input_energy * y_true, 2)  # (B, T)
        # (B, T-1)
        chain_energy = K.sum(K.dot(y_true[:, :-1, :],
                                   self.chain_kernel) * y_true[:, 1:, :], 2)

        if mask is not None:
            mask = K.cast(mask, K.floatx())
            # (B, T-1), mask[:,:-1]*mask[:,1:] makes it work with any padding
            chain_mask = mask[:, :-1] * mask[:, 1:]
            input_energy = input_energy * mask
            chain_energy = chain_energy * chain_mask
        total_energy = K.sum(input_energy, -1) + K.sum(chain_energy, -1)  # (B, )

        return total_energy 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:19,代碼來源:crf.py

示例2: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def call(self, x, mask=None):
        # x: (batch_size, input_length, input_dim)
        if mask is None:
            return K.mean(x, axis=1)  # (batch_size, input_dim)
        else:
            # This is to remove padding from the computational graph.
            if K.ndim(mask) > K.ndim(x):
                # This is due to the bug in Bidirectional that is passing the input mask
                # instead of computing output mask.
                # TODO: Fix the implementation of Bidirectional.
                mask = K.any(mask, axis=(-2, -1))
            if K.ndim(mask) < K.ndim(x):
                mask = K.expand_dims(mask)
            masked_input = switch(mask, x, K.zeros_like(x))
            weights = K.cast(mask / (K.sum(mask) + K.epsilon()), 'float32')
            return K.sum(masked_input * weights, axis=1)  # (batch_size, input_dim) 
開發者ID:pdasigi,項目名稱:onto-lstm,代碼行數:18,代碼來源:pooling.py

示例3: loss_function

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def loss_function(self):
        if self.learn_mode == 'join':
            def loss(y_true, y_pred):
                assert self._inbound_nodes, 'CRF has not connected to any layer.'
                assert not self._outbound_nodes, 'When learn_model="join", CRF must be the last layer.'
                if self.sparse_target:
                    y_true = K.one_hot(K.cast(y_true[:, :, 0], 'int32'), self.units)
                X = self._inbound_nodes[0].input_tensors[0]
                mask = self._inbound_nodes[0].input_masks[0]
                nloglik = self.get_negative_log_likelihood(y_true, X, mask)
                return nloglik
            return loss
        else:
            if self.sparse_target:
                return sparse_categorical_crossentropy
            else:
                return categorical_crossentropy 
開發者ID:yongyuwen,項目名稱:sequence-tagging-ner,代碼行數:19,代碼來源:layers.py

示例4: compute_mask

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def compute_mask(self, input, mask=None):
        if mask is not None:
            return K.any(mask, axis=1)
        return mask 
開發者ID:UKPLab,項目名稱:elmo-bilstm-cnn-crf,代碼行數:6,代碼來源:ChainCRF.py

示例5: compute_mask

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def compute_mask(self, input, mask=None):
        if mask is not None and self.learn_mode == 'join':
            return K.any(mask, axis=1)
        return mask 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:6,代碼來源:crf.py

示例6: get_log_normalization_constant

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def get_log_normalization_constant(self, input_energy, mask, **kwargs):
        """Compute logarithm of the normalization constant Z, where
        Z = sum exp(-E) -> logZ = log sum exp(-E) =: -nlogZ
        """
        # should have logZ[:, i] == logZ[:, j] for any i, j
        logZ = self.recursion(input_energy, mask, return_sequences=False, **kwargs)
        return logZ[:, 0] 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:9,代碼來源:crf.py

示例7: _cosine_distance

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def _cosine_distance(M, k):
    # this is equation (6), or as I like to call it: The NaN factory.
    # TODO: Find it in a library (keras cosine loss?)
    # normalizing first as it is better conditioned.
    nk = K.l2_normalize(k, axis=-1)
    nM = K.l2_normalize(M, axis=-1)
    cosine_distance = K.batch_dot(nM, nk)
    # TODO: Do succesfull error handling
    #cosine_distance_error_handling = tf.Print(cosine_distance, [cosine_distance], message="NaN occured in _cosine_distance")
    #cosine_distance_error_handling = K.ones(cosine_distance_error_handling.shape)
    #cosine_distance = tf.case({K.any(tf.is_nan(cosine_distance)) : (lambda: cosine_distance_error_handling)},
    #        default = lambda: cosine_distance, strict=True)
    return cosine_distance 
開發者ID:flomlo,項目名稱:ntm_keras,代碼行數:15,代碼來源:ntm.py

示例8: viterbi_decoding

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def viterbi_decoding(self, X, mask=None):
        input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
        if self.use_boundary:
            input_energy = self.add_boundary_energy(
                input_energy, mask, self.left_boundary, self.right_boundary)

        argmin_tables = self.recursion(input_energy, mask, return_logZ=False)
        argmin_tables = K.cast(argmin_tables, 'int32')

        # backward to find best path, `initial_best_idx` can be any,
        # as all elements in the last argmin_table are the same
        argmin_tables = K.reverse(argmin_tables, 1)
        # matrix instead of vector is required by tf `K.rnn`
        initial_best_idx = [K.expand_dims(argmin_tables[:, 0, 0])]
        if K.backend() == 'theano':
            initial_best_idx = [K.T.unbroadcast(initial_best_idx[0], 1)]

        def gather_each_row(params, indices):
            n = K.shape(indices)[0]
            if K.backend() == 'theano':
                return params[K.T.arange(n), indices]
            else:
                indices = K.transpose(K.stack([K.tf.range(n), indices]))
                return K.tf.gather_nd(params, indices)

        def find_path(argmin_table, best_idx):
            next_best_idx = gather_each_row(argmin_table, best_idx[0][:, 0])
            next_best_idx = K.expand_dims(next_best_idx)
            if K.backend() == 'theano':
                next_best_idx = K.T.unbroadcast(next_best_idx, 1)
            return next_best_idx, [next_best_idx]

        _, best_paths, _ = K.rnn(find_path, argmin_tables, initial_best_idx,
                                 input_length=K.int_shape(X)[1], unroll=self.unroll)
        best_paths = K.reverse(best_paths, 1)
        best_paths = K.squeeze(best_paths, 2)

        return K.one_hot(best_paths, self.units) 
開發者ID:yongzhuo,項目名稱:nlp_xiaojiang,代碼行數:40,代碼來源:keras_bert_layer.py

示例9: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def call(self, inputs):
        if not isinstance(inputs, list) or len(inputs) != 2:
            raise ValueError('Inputs to ExternalMasking should be a list of 2 tensors.')
        boolean_mask = K.any(K.not_equal(inputs[-1], self.mask_value),
                             axis=-1, keepdims=True)
        return inputs[0] * K.cast(boolean_mask, K.dtype(inputs[0])) 
開發者ID:PeterChe1990,項目名稱:GRU-D,代碼行數:8,代碼來源:layers.py

示例10: compute_mask

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def compute_mask(self, input, mask):
        # redefining compute mask because the input ndim is different from the output ndim, and 
        # this needs to be handled.
        if self.return_sequences and mask is not None:
            # Get rid of syn and hyp dimensions
            # input mask's shape: (batch_size, num_words, num_hyps, num_senses)
            # output mask's shape: (batch_size, num_words)
            return K.any(mask, axis=(-2, -1))
        else:
            return None 
開發者ID:pdasigi,項目名稱:onto-lstm,代碼行數:12,代碼來源:onto_attention.py

示例11: compute_mask

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def compute_mask(x, mask_value=0):
    boolean_mask = K.any(K.not_equal(x, mask_value), axis=-1, keepdims=False)
    return K.cast(boolean_mask, K.floatx()) 
開發者ID:YerevaNN,項目名稱:R-NET-in-Keras,代碼行數:5,代碼來源:helpers.py

示例12: get_energy

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def get_energy(self, y_true, input_energy, mask):
        """Energy = a1' y1 + u1' y1 + y1' U y2 + u2' y2 + y2' U y3 + u3' y3 + an' y3
        """
        input_energy = K.sum(input_energy * y_true, 2)  # (B, T)
        chain_energy = K.sum(K.dot(y_true[:, :-1, :], self.chain_kernel) * y_true[:, 1:, :], 2)  # (B, T-1)

        if mask is not None:
            mask = K.cast(mask, K.floatx())
            chain_mask = mask[:, :-1] * mask[:, 1:]  # (B, T-1), mask[:,:-1]*mask[:,1:] makes it work with any padding
            input_energy = input_energy * mask
            chain_energy = chain_energy * chain_mask
        total_energy = K.sum(input_energy, -1) + K.sum(chain_energy, -1)  # (B, )

        return total_energy 
開發者ID:yongyuwen,項目名稱:sequence-tagging-ner,代碼行數:16,代碼來源:layers.py

示例13: viterbi_decoding

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def viterbi_decoding(self, X, mask=None):
        input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
        if self.use_boundary:
            input_energy = self.add_boundary_energy(input_energy, mask, self.left_boundary, self.right_boundary)

        argmin_tables = self.recursion(input_energy, mask, return_logZ=False)
        argmin_tables = K.cast(argmin_tables, 'int32')

        # backward to find best path, `initial_best_idx` can be any, as all elements in the last argmin_table are the same
        argmin_tables = K.reverse(argmin_tables, 1)
        initial_best_idx = [K.expand_dims(argmin_tables[:, 0, 0])]  # matrix instead of vector is required by tf `K.rnn`
        if K.backend() == 'theano':
            initial_best_idx = [K.T.unbroadcast(initial_best_idx[0], 1)]

        def gather_each_row(params, indices):
            n = K.shape(indices)[0]
            if K.backend() == 'theano':
                return params[K.T.arange(n), indices]
            else:
                indices = K.transpose(K.stack([K.tf.range(n), indices]))
                return K.tf.gather_nd(params, indices)

        def find_path(argmin_table, best_idx):
            next_best_idx = gather_each_row(argmin_table, best_idx[0][:, 0])
            next_best_idx = K.expand_dims(next_best_idx)
            if K.backend() == 'theano':
                next_best_idx = K.T.unbroadcast(next_best_idx, 1)
            return next_best_idx, [next_best_idx]

        _, best_paths, _ = K.rnn(find_path, argmin_tables, initial_best_idx, input_length=K.int_shape(X)[1], unroll=self.unroll)
        best_paths = K.reverse(best_paths, 1)
        best_paths = K.squeeze(best_paths, 2)

        return K.one_hot(best_paths, self.units) 
開發者ID:yongyuwen,項目名稱:sequence-tagging-ner,代碼行數:36,代碼來源:layers.py

示例14: normalize_mask

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def normalize_mask(x, mask):
    '''Keep the mask align wtih the tensor x

    Arguments: x is a data tensor; mask is a binary tensor
    Rationale: keep mask at same dimensionality as x, but only with a length-1 
               trailing dimension. This ensures broadcastability, which is important
               because inferring shapes is hard and shapes are easy to get wrong. 
    '''
    mask = K.cast(mask, K.floatx())
    while K.ndim(mask) != K.ndim(x):
        if K.ndim(mask) > K.ndim(x):
            mask = K.any(mask, axis=-1)
        elif K.ndim(mask) < K.ndim(x):
            mask = K.expand_dims(mask)
    return K.any(mask, axis=-1, keepdims=True) 
開發者ID:braingineer,項目名稱:ikelos,代碼行數:17,代碼來源:__init__.py

示例15: compute_mask

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import any [as 別名]
def compute_mask(self, x, mask=None):
        if mask is None:
            return None
        #import pdb
        #pdb.set_trace()
        target_dim = K.ndim(x) - 2
        num_reducing = K.ndim(mask) - target_dim
        if num_reducing:
            axes = tuple([-i for i in range(1,num_reducing+1)])
            mask = K.any(mask, axes)

        return mask 
開發者ID:braingineer,項目名稱:ikelos,代碼行數:14,代碼來源:distribute.py


注:本文中的keras.backend.any方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。