當前位置: 首頁>>代碼示例>>Python>>正文


Python xception.preprocess_input方法代碼示例

本文整理匯總了Python中keras.applications.xception.preprocess_input方法的典型用法代碼示例。如果您正苦於以下問題:Python xception.preprocess_input方法的具體用法?Python xception.preprocess_input怎麽用?Python xception.preprocess_input使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.applications.xception的用法示例。


在下文中一共展示了xception.preprocess_input方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def main(args):

    # create model
    model = load_model(args.model)

    # load class names
    classes = []
    with open(args.classes, 'r') as f:
        classes = list(map(lambda x: x.strip(), f.readlines()))

    # load an input image
    img = image.load_img(args.image, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    # predict
    pred = model.predict(x)[0]
    result = [(classes[i], float(pred[i]) * 100.0) for i in range(len(pred))]
    result.sort(reverse=True, key=lambda x: x[1])
    for i in range(args.top_n):
        (class_name, prob) = result[i]
        print("Top %d ====================" % (i + 1))
        print("Class name: %s" % (class_name))
        print("Probability: %.2f%%" % (prob)) 
開發者ID:otenim,項目名稱:Xception-with-Your-Own-Dataset,代碼行數:27,代碼來源:inference.py

示例2: generate_from_paths_and_labels

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def generate_from_paths_and_labels(
        input_paths, labels, batch_size, input_size=(299, 299)):
    num_samples = len(input_paths)
    while 1:
        perm = np.random.permutation(num_samples)
        input_paths = input_paths[perm]
        labels = labels[perm]
        for i in range(0, num_samples, batch_size):
            inputs = list(map(
                lambda x: image.load_img(x, target_size=input_size),
                input_paths[i:i+batch_size]
            ))
            inputs = np.array(list(map(
                lambda x: image.img_to_array(x),
                inputs
            )))
            inputs = preprocess_input(inputs)
            yield (inputs, labels[i:i+batch_size]) 
開發者ID:otenim,項目名稱:Xception-with-Your-Own-Dataset,代碼行數:20,代碼來源:fine_tune.py

示例3: test_spimage_converter_module

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def test_spimage_converter_module(self):
        """ spimage converter module must preserve original image """
        img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))

        def exec_gfn_spimg_decode(spimg_dict, img_dtype):
            gfn = gfac.buildSpImageConverter('BGR', img_dtype)
            with IsolatedSession() as issn:
                feeds, fetches = issn.importGraphFunction(gfn, prefix="")
                feed_dict = dict(
                    (tnsr, spimg_dict[tfx.op_name(tnsr, issn.graph)]) for tnsr in feeds)
                img_out = issn.run(fetches[0], feed_dict=feed_dict)
            return img_out

        def check_image_round_trip(img_arr):
            spimg_dict = imageArrayToStruct(img_arr).asDict()
            spimg_dict['data'] = bytes(spimg_dict['data'])
            img_arr_out = exec_gfn_spimg_decode(
                spimg_dict, imageTypeByOrdinal(spimg_dict['mode']).dtype)
            self.assertTrue(np.all(img_arr_out == img_arr))

        for fp in img_fpaths:
            img = load_img(fp)

            img_arr_byte = img_to_array(img).astype(np.uint8)
            check_image_round_trip(img_arr_byte)

            img_arr_float = img_to_array(img).astype(np.float32)
            check_image_round_trip(img_arr_float)

            img_arr_preproc = iv3.preprocess_input(img_to_array(img))
            check_image_round_trip(img_arr_preproc) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:33,代碼來源:test_pieces.py

示例4: test_bare_keras_module

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def test_bare_keras_module(self):
        """ Keras GraphFunctions should give the same result as standard Keras models """
        img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))

        for model_gen, preproc_fn, target_size in [(InceptionV3, iv3.preprocess_input, model_sizes['InceptionV3']),
                                      (Xception, xcpt.preprocess_input, model_sizes['Xception']),
                                      (ResNet50, rsnt.preprocess_input, model_sizes['ResNet50'])]:

            keras_model = model_gen(weights="imagenet")
            _preproc_img_list = []
            for fpath in img_fpaths:
                img = load_img(fpath, target_size=target_size)
                # WARNING: must apply expand dimensions first, or ResNet50 preprocessor fails
                img_arr = np.expand_dims(img_to_array(img), axis=0)
                _preproc_img_list.append(preproc_fn(img_arr))

            imgs_input = np.vstack(_preproc_img_list)

            preds_ref = keras_model.predict(imgs_input)

            gfn_bare_keras = GraphFunction.fromKeras(keras_model)

            with IsolatedSession(using_keras=True) as issn:
                K.set_learning_phase(0)
                feeds, fetches = issn.importGraphFunction(gfn_bare_keras)
                preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_input})

            np.testing.assert_array_almost_equal(preds_tgt,
                                                 preds_ref,
                                                 decimal=self.featurizerCompareDigitsExact) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:32,代碼來源:test_pieces.py

示例5: test_pipeline

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def test_pipeline(self):
        """ Pipeline should provide correct function composition """
        img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))

        xcpt_model = Xception(weights="imagenet")
        stages = [('spimage', gfac.buildSpImageConverter('BGR', 'float32')),
                  ('xception', GraphFunction.fromKeras(xcpt_model))]
        piped_model = GraphFunction.fromList(stages)

        for fpath in img_fpaths:
            target_size = model_sizes['Xception']
            img = load_img(fpath, target_size=target_size)
            img_arr = np.expand_dims(img_to_array(img), axis=0)
            img_input = xcpt.preprocess_input(img_arr)
            preds_ref = xcpt_model.predict(img_input)

            spimg_input_dict = imageArrayToStruct(img_input).asDict()
            spimg_input_dict['data'] = bytes(spimg_input_dict['data'])
            with IsolatedSession() as issn:
                # Need blank import scope name so that spimg fields match the input names
                feeds, fetches = issn.importGraphFunction(piped_model, prefix="")
                feed_dict = dict(
                    (tnsr, spimg_input_dict[tfx.op_name(tnsr, issn.graph)]) for tnsr in feeds)
                preds_tgt = issn.run(fetches[0], feed_dict=feed_dict)
                # Uncomment the line below to see the graph
                # tfx.write_visualization_html(issn.graph,
                # NamedTemporaryFile(prefix="gdef", suffix=".html").name)

            np.testing.assert_array_almost_equal(preds_tgt,
                                                 preds_ref,
                                                 decimal=self.featurizerCompareDigitsExact) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:33,代碼來源:test_pieces.py

示例6: preprocess

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def preprocess(self, inputImage):
        # Keras expects RGB order
        return inception_v3.preprocess_input(_reverseChannels(inputImage)) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:5,代碼來源:keras_applications.py

示例7: extract_VGG16

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def extract_VGG16(tensor):
	from keras.applications.vgg16 import VGG16, preprocess_input
	return VGG16(weights='imagenet', include_top=False).predict(preprocess_input(tensor)) 
開發者ID:kubeflow-kale,項目名稱:kale,代碼行數:5,代碼來源:extract_bottleneck_features.py

示例8: extract_VGG19

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def extract_VGG19(tensor):
	from keras.applications.vgg19 import VGG19, preprocess_input
	return VGG19(weights='imagenet', include_top=False).predict(preprocess_input(tensor)) 
開發者ID:kubeflow-kale,項目名稱:kale,代碼行數:5,代碼來源:extract_bottleneck_features.py

示例9: extract_Resnet50

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def extract_Resnet50(tensor):
	from keras.applications.resnet50 import ResNet50, preprocess_input
	return ResNet50(weights='imagenet', include_top=False).predict(preprocess_input(tensor)) 
開發者ID:kubeflow-kale,項目名稱:kale,代碼行數:5,代碼來源:extract_bottleneck_features.py

示例10: extract_Xception

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def extract_Xception(tensor):
	from keras.applications.xception import Xception, preprocess_input
	return Xception(weights='imagenet', include_top=False).predict(preprocess_input(tensor)) 
開發者ID:kubeflow-kale,項目名稱:kale,代碼行數:5,代碼來源:extract_bottleneck_features.py

示例11: extract_InceptionV3

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def extract_InceptionV3(tensor):
	from keras.applications.inception_v3 import InceptionV3, preprocess_input
	return InceptionV3(weights='imagenet', include_top=False).predict(preprocess_input(tensor)) 
開發者ID:kubeflow-kale,項目名稱:kale,代碼行數:5,代碼來源:extract_bottleneck_features.py

示例12: val_pre_model

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def val_pre_model(source_path, folder, img_dim, architechture):

    array_path = os.path.join(source_path, folder)
    pre_model_path = os.path.join(source_path, 'pre_model')
    shutil.rmtree(pre_model_path,ignore_errors=True)
    os.makedirs(pre_model_path)

    if architechture == 'resnet50':
        popped, pre_model = get_resnet_pre_model(img_dim)
    elif architechture == 'xception':
        popped, pre_model = get_xception_pre_model(img_dim)
    else:
        popped, pre_model = get_inception_v3_pre_model(img_dim)

    for (array, label, array_name, label_name) in tqdm(gen_array_from_dir(array_path)):
        if architechture == 'resnet50':
            array = resnet_preprocess_input(array[np.newaxis].astype(np.float32))
        elif architechture == 'xception':
            array = xception_preprocess_input(array[np.newaxis].astype(np.float32))
        else:
            array = inception_v3_preprocess_input(array[np.newaxis].astype(np.float32))
        array_pre_model = np.squeeze(pre_model.predict(array, batch_size=1))

        array_name = array_name.split('.')[0]
        label_name = label_name.split('.')[0]

        img_pre_model_path = os.path.join(pre_model_path, array_name)
        label_pre_model_path = os.path.join(pre_model_path, label_name)

        np.save(img_pre_model_path, array_pre_model)
        np.save(label_pre_model_path, label) 
開發者ID:matthew-sochor-zz,項目名稱:transfer,代碼行數:33,代碼來源:pre_model.py

示例13: multi_predict

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def multi_predict(aug_gen, models, architecture):
    predicted = []
    for img, _ in aug_gen:
        if architecture == 'resnet50':
            img = resnet_preprocess_input(img[np.newaxis].astype(np.float32))
        elif architecture == 'xception':
            img = xception_preprocess_input(img[np.newaxis].astype(np.float32))
        else:
            img = inception_v3_preprocess_input(img[np.newaxis].astype(np.float32))
        for model in models:
            predicted.append(model.predict(img))
    predicted = np.array(predicted).sum(axis=0)
    pred_list = list(predicted[0])
    return predicted, pred_list 
開發者ID:matthew-sochor-zz,項目名稱:transfer,代碼行數:16,代碼來源:predict_model.py

示例14: gen_minibatches

# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import preprocess_input [as 別名]
def gen_minibatches(array_dir, array_names, batch_size, architecture, final = False):

    array_names = list(array_names)

    while True:
        # in place shuffle
        np.random.shuffle(array_names)
        array_names_mb = array_names[:batch_size]

        arrays = []
        labels = []
        for array_name in array_names_mb:
            img_path = os.path.join(array_dir, array_name)
            array = np.load(img_path)
            if final:
                if architecture == 'resnet50':
                    array = np.squeeze(resnet_preprocess_input(array[np.newaxis].astype(np.float32)))
                elif architecture == 'xception':
                    array = np.squeeze(xception_preprocess_input(array[np.newaxis].astype(np.float32)))
                else:
                    array = np.squeeze(inception_v3_preprocess_input(array[np.newaxis].astype(np.float32)))

            arrays.append(array)
            labels.append(np.load(img_path.replace('-img-','-label-')))

        yield np.array(arrays), np.array(labels) 
開發者ID:matthew-sochor-zz,項目名稱:transfer,代碼行數:28,代碼來源:model.py


注:本文中的keras.applications.xception.preprocess_input方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。