本文整理匯總了Python中keras.applications.xception.Xception方法的典型用法代碼示例。如果您正苦於以下問題:Python xception.Xception方法的具體用法?Python xception.Xception怎麽用?Python xception.Xception使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.applications.xception
的用法示例。
在下文中一共展示了xception.Xception方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _imagenet_preprocess_input
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def _imagenet_preprocess_input(x, input_shape):
"""
For ResNet50, VGG models. For InceptionV3 and Xception it's okay to use the
keras version (e.g. InceptionV3.preprocess_input) as the code path they hit
works okay with tf.Tensor inputs. The following was translated to tf ops from
https://github.com/fchollet/keras/blob/fb4a0849cf4dc2965af86510f02ec46abab1a6a4/keras/applications/imagenet_utils.py#L52
It's a possibility to change the implementation in keras to look like the
following and modified to work with BGR images (standard in Spark), but not doing it for now.
"""
# assuming 'BGR'
# Zero-center by mean pixel
mean = np.ones(input_shape + (3,), dtype=np.float32)
mean[..., 0] = 103.939
mean[..., 1] = 116.779
mean[..., 2] = 123.68
return x - mean
示例2: get_model
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def get_model(session):
# create the base pre-trained model
base_model = Xception(weights=None, include_top=False, input_shape=(270, 480, 3))
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# putput layer
predictions = Dense(session.training_dataset_info['number_of_labels'], activation='softmax')(x)
# model
model = Model(inputs=base_model.input, outputs=predictions)
learning_rate = 0.001
opt = keras.optimizers.adam(lr=learning_rate, decay=1e-5)
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
return model
示例3: _get_base_model
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def _get_base_model(self):
"""
:return: base model from Keras based on user-supplied model name
"""
if self.model_name == 'inception_v3':
return InceptionV3(weights='imagenet', include_top=False)
elif self.model_name == 'xception':
return Xception(weights='imagenet', include_top=False)
elif self.model_name == 'vgg16':
return VGG16(weights='imagenet', include_top=False)
elif self.model_name == 'vgg19':
return VGG19(weights='imagenet', include_top=False)
elif self.model_name == 'resnet50':
return ResNet50(weights='imagenet', include_top=False)
else:
raise ValueError('Cannot find base model %s' % self.model_name)
示例4: model
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def model(self, preprocessed, featurize):
# Model provided by Keras. All cotributions by Keras are provided subject to the
# MIT license located at https://github.com/fchollet/keras/blob/master/LICENSE.
return xception.Xception(input_tensor=preprocessed, weights="imagenet",
include_top=(not featurize))
示例5: _testKerasModel
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def _testKerasModel(self, include_top):
return xception.Xception(weights="imagenet",
include_top=include_top)
示例6: extract_Xception
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def extract_Xception(tensor):
from keras.applications.xception import Xception, preprocess_input
return Xception(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
示例7: get_xception_model
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def get_xception_model(img_dim):
array_input = Input(shape=(img_dim, img_dim, 3))
xception = Xception(include_top=True,
weights='imagenet',
input_tensor=array_input,
pooling='avg')
return xception
示例8: test_Xception
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def test_Xception(self):
from keras.applications.xception import Xception
model = Xception(include_top=True, weights='imagenet')
res = run_image(model, self.model_files, img_path, atol=5e-3, target_size=299)
self.assertTrue(*res)
示例9: create_model
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def create_model(input_shape, config):
input_tensor = Input(shape=input_shape) # this assumes K.image_dim_ordering() == 'tf'
xception_model = Xception(include_top=False, weights=None, input_tensor=input_tensor)
print(xception_model.summary())
x = xception_model.output
x = GlobalAveragePooling2D()(x)
predictions = Dense(config["num_classes"], activation='softmax')(x)
return Model(input=xception_model.input, output=predictions)
示例10: model_base_Xception
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def model_base_Xception(input_shape):
model = Xception(weights=None, include_top=False, input_shape=input_shape)
# Grab last model layer and attach global average pooling layer
x = model.output
x = GlobalAveragePooling2D()(x)
return model.input, x
# First small CNN model
示例11: get_tst_neural_net
# 需要導入模塊: from keras.applications import xception [as 別名]
# 或者: from keras.applications.xception import Xception [as 別名]
def get_tst_neural_net(type):
model = None
custom_objects = dict()
if type == 'mobilenet_small':
from keras.applications.mobilenet import MobileNet
model = MobileNet((128, 128, 3), depth_multiplier=1, alpha=0.25, include_top=True, weights='imagenet')
elif type == 'mobilenet':
from keras.applications.mobilenet import MobileNet
model = MobileNet((224, 224, 3), depth_multiplier=1, alpha=1.0, include_top=True, weights='imagenet')
elif type == 'mobilenet_v2':
from keras.applications.mobilenetv2 import MobileNetV2
model = MobileNetV2((224, 224, 3), depth_multiplier=1, alpha=1.4, include_top=True, weights='imagenet')
elif type == 'resnet50':
from keras.applications.resnet50 import ResNet50
model = ResNet50(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'inception_v3':
from keras.applications.inception_v3 import InceptionV3
model = InceptionV3(input_shape=(299, 299, 3), include_top=True, weights='imagenet')
elif type == 'inception_resnet_v2':
from keras.applications.inception_resnet_v2 import InceptionResNetV2
model = InceptionResNetV2(input_shape=(299, 299, 3), include_top=True, weights='imagenet')
elif type == 'xception':
from keras.applications.xception import Xception
model = Xception(input_shape=(299, 299, 3), include_top=True, weights='imagenet')
elif type == 'densenet121':
from keras.applications.densenet import DenseNet121
model = DenseNet121(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'densenet169':
from keras.applications.densenet import DenseNet169
model = DenseNet169(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'densenet201':
from keras.applications.densenet import DenseNet201
model = DenseNet201(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'nasnetmobile':
from keras.applications.nasnet import NASNetMobile
model = NASNetMobile(input_shape=(224, 224, 3), include_top=True, weights='imagenet')
elif type == 'nasnetlarge':
from keras.applications.nasnet import NASNetLarge
model = NASNetLarge(input_shape=(331, 331, 3), include_top=True, weights='imagenet')
elif type == 'vgg16':
from keras.applications.vgg16 import VGG16
model = VGG16(input_shape=(224, 224, 3), include_top=False, pooling='avg', weights='imagenet')
elif type == 'vgg19':
from keras.applications.vgg19 import VGG19
model = VGG19(input_shape=(224, 224, 3), include_top=False, pooling='avg', weights='imagenet')
elif type == 'multi_io':
model = get_custom_multi_io_model()
elif type == 'multi_model_layer_1':
model = get_custom_model_with_other_model_as_layer()
elif type == 'multi_model_layer_2':
model = get_small_model_with_other_model_as_layer()
elif type == 'Conv2DTranspose':
model = get_Conv2DTranspose_model()
elif type == 'RetinaNet':
model, custom_objects = get_RetinaNet_model()
elif type == 'conv3d_model':
model = get_simple_3d_model()
return model, custom_objects