本文整理匯總了Python中keras.applications.vgg19.preprocess_input方法的典型用法代碼示例。如果您正苦於以下問題:Python vgg19.preprocess_input方法的具體用法?Python vgg19.preprocess_input怎麽用?Python vgg19.preprocess_input使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.applications.vgg19
的用法示例。
在下文中一共展示了vgg19.preprocess_input方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: extra_feat
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def extra_feat(img_path):
#Using a VGG19 as feature extractor
base_model = VGG19(weights='imagenet',include_top=False)
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
block1_pool_features=get_activations(base_model, 3, x)
block2_pool_features=get_activations(base_model, 6, x)
block3_pool_features=get_activations(base_model, 10, x)
block4_pool_features=get_activations(base_model, 14, x)
block5_pool_features=get_activations(base_model, 18, x)
x1 = tf.image.resize_images(block1_pool_features[0],[112,112])
x2 = tf.image.resize_images(block2_pool_features[0],[112,112])
x3 = tf.image.resize_images(block3_pool_features[0],[112,112])
x4 = tf.image.resize_images(block4_pool_features[0],[112,112])
x5 = tf.image.resize_images(block5_pool_features[0],[112,112])
F = tf.concat([x3,x2,x1,x4,x5],3) #Change to only x1, x1+x2,x1+x2+x3..so on, inorder to visualize features from diffetrrnt blocks
return F
示例2: preprocess_image
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def preprocess_image(image_path):
img = load_img(image_path, target_size=(img_height, img_width))
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg19.preprocess_input(img)
return img
示例3: preprocess_image
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def preprocess_image(image_path):
img = image.load_img(image_path, target_size=(224, 224))
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
return img
示例4: extract_VGG16
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def extract_VGG16(tensor):
from keras.applications.vgg16 import VGG16, preprocess_input
return VGG16(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
示例5: extract_VGG19
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def extract_VGG19(tensor):
from keras.applications.vgg19 import VGG19, preprocess_input
return VGG19(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
示例6: extract_Resnet50
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def extract_Resnet50(tensor):
from keras.applications.resnet50 import ResNet50, preprocess_input
return ResNet50(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
示例7: extract_Xception
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def extract_Xception(tensor):
from keras.applications.xception import Xception, preprocess_input
return Xception(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
示例8: extract_InceptionV3
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def extract_InceptionV3(tensor):
from keras.applications.inception_v3 import InceptionV3, preprocess_input
return InceptionV3(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
示例9: call
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def call(self, x, y):
x = ((x + 1) / 2) * 255.0
y = ((y + 1) / 2) * 255.0
x_vgg, y_vgg = self.vgg(preprocess_input(x)), self.vgg(preprocess_input(y))
loss = 0
for i in range(len(x_vgg)):
y_vgg_detach = tf.stop_gradient(y_vgg[i])
loss += self.layer_weights[i] * L1_loss(x_vgg[i], y_vgg_detach)
return loss
示例10: extract
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def extract(path):
im = cv2.imread(path)
#img = image.load_img(path, target_size=(448,448))
if im is None:
raise Exception("Incorrect path")
#im = cv2.resize(im, (448, 448))
#im = im.transpose((2,0,1))
#im = np.expand_dims(im, axis=0)
im = cv2.resize(im, (448,448)).astype(np.float32)
im = im * 255
im[:,:,0] -= 103.939
im[:,:,1] -= 116.779
im[:,:,2] -= 123.68
#im = im.transpose((2,0,1))
im = np.expand_dims(im, axis=0)
#x = image.img_to_array(img)
#x = np.expand_dims(x, axis=0)
#x = preprocess_input(x)
im = preprocess_input(im)
# print (im.shape)
# Test pretrained model
model = get_model()
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy')
out = model.predict(im)
return out
示例11: preprocess_image
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def preprocess_image(image_path):
img = load_img(image_path, target_size=(img_nrows, img_ncols))
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg19.preprocess_input(img)
return img
# util function to convert a tensor into a valid image
示例12: preprocess_image
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def preprocess_image(image_path):
img = load_img(image_path, target_size=(img_nrows, img_ncols))
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg19.preprocess_input(img)
return img
示例13: preprocess_image
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import preprocess_input [as 別名]
def preprocess_image(image):
"""
預處理圖片,包括變形到(1,width, height)形狀,數據歸一到0-1之間
:param image: 輸入一張圖片
:return: 預處理好的圖片
"""
image = image.resize((width, height))
image = img_to_array(image)
image = np.expand_dims(image, axis=0) # (width, height)->(1,width, height)
image = vgg19.preprocess_input(image) # 0-255 -> 0-1.0
return image
開發者ID:yuweiming70,項目名稱:Style_Migration_For_Artistic_Font_With_CNN,代碼行數:13,代碼來源:neural_style_transfer.py